論文の概要: Universal Gloss-level Representation for Gloss-free Sign Language Translation and Production
- arxiv url: http://arxiv.org/abs/2407.02854v1
- Date: Wed, 3 Jul 2024 07:12:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 15:25:09.600623
- Title: Universal Gloss-level Representation for Gloss-free Sign Language Translation and Production
- Title(参考訳): グロスフリー手話翻訳・生成のためのユニバーサルグロスレベル表現
- Authors: Eui Jun Hwang, Sukmin Cho, Huije Lee, Youngwoo Yoon, Jong C. Park,
- Abstract要約: Universal Gloss-level Representation (UniGloR)は手話翻訳と手話生成のための統一的で自己指導型のソリューションである。
本結果は,UniGloRの翻訳および生産における有効性を示すものである。
本研究は, 自己指導型学習を統一的に実現し, 革新的かつ実践的な応用の道を開くことを示唆する。
- 参考スコア(独自算出の注目度): 9.065171626657818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sign language, essential for the deaf and hard-of-hearing, presents unique challenges in translation and production due to its multimodal nature and the inherent ambiguity in mapping sign language motion to spoken language words. Previous methods often rely on gloss annotations, requiring time-intensive labor and specialized expertise in sign language. Gloss-free methods have emerged to address these limitations, but they often depend on external sign language data or dictionaries, failing to completely eliminate the need for gloss annotations. There is a clear demand for a comprehensive approach that can supplant gloss annotations and be utilized for both Sign Language Translation (SLT) and Sign Language Production (SLP). We introduce Universal Gloss-level Representation (UniGloR), a unified and self-supervised solution for both SLT and SLP, trained on multiple datasets including PHOENIX14T, How2Sign, and NIASL2021. Our results demonstrate UniGloR's effectiveness in the translation and production tasks. We further report an encouraging result for the Sign Language Recognition (SLR) on previously unseen data. Our study suggests that self-supervised learning can be made in a unified manner, paving the way for innovative and practical applications in future research.
- Abstract(参考訳): 手話は、聴覚障害や難聴に欠かせないものであり、多モーダルな性質と手話の動きを話し言葉にマッピングする本来のあいまいさにより、翻訳と生産において固有の課題を呈している。
それまでの手法は、しばしばグロスアノテーションに頼り、手話に時間を要する労働と専門的な専門知識を必要とする。
グロスフリーなメソッドはこれらの制限に対処するために現れたが、しばしば外部の手話データや辞書に依存しており、グロスアノテーションの必要性を完全に排除することができない。
グロスアノテーションを置き換えて手話翻訳(SLT)と手話生成(SLP)の両方に活用できる包括的アプローチへの明確な要求がある。
我々は、PHOENIX14T、How2Sign、NIASL2021などの複数のデータセットでトレーニングされた、SLTとSLPの統一かつ自己教師型ソリューションであるUniGloR(UniGloR)を紹介する。
本結果は,UniGloRの翻訳および生産における有効性を示すものである。
さらに、未確認データに対して、手話認識(SLR)を奨励する結果を報告する。
本研究は、自己指導型学習を統一的に実現し、今後の研究における革新的で実践的な応用の道を開くことを示唆している。
関連論文リスト
- Scaling up Multimodal Pre-training for Sign Language Understanding [96.17753464544604]
手話は、難聴者コミュニティにとってコミュニケーションの主要な意味である。
難聴者と聴覚者のコミュニケーションを容易にするために,手話理解(SLU)タスクのシリーズが研究されている。
これらの課題は、多様な視点から手話のトピックを調査し、手話ビデオの効果的な表現を学ぶ上での課題を提起する。
論文 参考訳(メタデータ) (2024-08-16T06:04:25Z) - Sign2GPT: Leveraging Large Language Models for Gloss-Free Sign Language Translation [30.008980708977095]
我々は手話翻訳の新しいフレームワークSign2GPTを紹介する。
本稿では,自動抽出した擬似グルースから符号表現を学習するようエンコーダに指示する,新しい事前学習戦略を提案する。
我々は2つの公開ベンチマーク手話翻訳データセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2024-05-07T10:00:38Z) - Gloss-free Sign Language Translation: Improving from Visual-Language
Pretraining [56.26550923909137]
Gloss-Free Sign Language Translation (SLT) はドメイン横断性のために難しい課題である。
視覚言語事前学習(GFSLT-)に基づく新しいGross-free SLTを提案する。
i) コントラスト言語-画像事前学習とマスク付き自己教師付き学習を統合して,視覚的表現とテキスト的表現のセマンティックギャップをブリッジするプレタスクを作成し,マスク付き文を復元すること,(ii) 事前訓練されたビジュアルおよびテキストデコーダのパラメータを継承するエンコーダ-デコーダ-のような構造を持つエンドツーエンドアーキテクチャを構築すること,である。
論文 参考訳(メタデータ) (2023-07-27T10:59:18Z) - Gloss Attention for Gloss-free Sign Language Translation [60.633146518820325]
グロスアノテーションによって手話の翻訳が容易になることを示す。
次に,同じセマンティクスを持つビデオセグメント内で,モデルが注意を維持できるように,エンファングルースアテンションを提案する。
複数の大規模手話データセットに対する実験結果から,提案したGASLTモデルは既存手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-14T14:07:55Z) - Prompting Language Models for Linguistic Structure [73.11488464916668]
本稿では,言語構造予測タスクに対する構造化プロンプト手法を提案する。
提案手法は, 音声タグ付け, 名前付きエンティティ認識, 文チャンキングについて評価する。
PLMはタスクラベルの事前知識を事前学習コーパスに漏えいすることで有意な事前知識を含むが、構造化プロンプトは任意のラベルで言語構造を復元することも可能である。
論文 参考訳(メタデータ) (2022-11-15T01:13:39Z) - Changing the Representation: Examining Language Representation for
Neural Sign Language Production [43.45785951443149]
ニューラルサイン言語生産パイプラインの第1ステップに自然言語処理技術を適用した。
BERTやWord2Vecといった言語モデルを使って文レベルの埋め込みを改善する。
本稿では,HamNoSys(T2H)翻訳にテキストを導入し,手話翻訳に音声表現を用いることの利点を示す。
論文 参考訳(メタデータ) (2022-09-16T12:45:29Z) - All You Need In Sign Language Production [50.3955314892191]
言語認識と生産のサインは、いくつかの重要な課題に対処する必要があります。
本稿では,難聴文化,難聴センター,手話の心理的視点について紹介する。
また、SLPのバックボーンアーキテクチャや手法を簡潔に紹介し、SLPの分類について提案する。
論文 参考訳(メタデータ) (2022-01-05T13:45:09Z) - Including Signed Languages in Natural Language Processing [48.62744923724317]
署名された言語は、聴覚障害者や難聴者のコミュニケーションの主な手段です。
このポジショニングペーパーは、NLPコミュニティに対して、社会的および科学的影響の高い研究領域として署名された言語を含めるよう求めている。
論文 参考訳(メタデータ) (2021-05-11T17:37:55Z) - Adversarial Training for Multi-Channel Sign Language Production [43.45785951443149]
本稿では,手話生成に対する逆多重チャネルアプローチを提案する。
我々は,変圧器ベースジェネレータと条件判別器との間のミニマックスゲームとして,符号生成を行う。
逆微分器は、原文で条件付けられた符号生成の現実性を評価し、生成元を現実的で明瞭な出力にプッシュする。
論文 参考訳(メタデータ) (2020-08-27T23:05:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。