Joint Optimization of Resource Allocation and Data Selection for Fast and Cost-Efficient Federated Edge Learning
- URL: http://arxiv.org/abs/2407.02888v1
- Date: Wed, 3 Jul 2024 08:03:59 GMT
- Title: Joint Optimization of Resource Allocation and Data Selection for Fast and Cost-Efficient Federated Edge Learning
- Authors: Yunjian Jia, Zhen Huang, Jiping Yan, Yulu Zhang, Kun Luo, Wanli Wen,
- Abstract summary: Deploying learning at the wireless edge introduces FEEL (FEEL)
We propose an efficient system, a federated joint resource allocation and data selection.
The superiority of our proposed scheme of joint resource allocation and data selection is validated.
- Score: 9.460012379815423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deploying federated learning at the wireless edge introduces federated edge learning (FEEL). Given FEEL's limited communication resources and potential mislabeled data on devices, improper resource allocation or data selection can hurt convergence speed and increase training costs. Thus, to realize an efficient FEEL system, this paper emphasizes jointly optimizing resource allocation and data selection. Specifically, in this work, through rigorously modeling the training process and deriving an upper bound on FEEL's one-round convergence rate, we establish a problem of joint resource allocation and data selection, which, unfortunately, cannot be solved directly. Toward this end, we equivalently transform the original problem into a solvable form via a variable substitution and then break it into two subproblems, that is, the resource allocation problem and the data selection problem. The two subproblems are mixed-integer non-convex and integer non-convex problems, respectively, and achieving their optimal solutions is a challenging task. Based on the matching theory and applying the convex-concave procedure and gradient projection methods, we devise a low-complexity suboptimal algorithm for the two subproblems, respectively. Finally, the superiority of our proposed scheme of joint resource allocation and data selection is validated by numerical results.
Related papers
- Faster Convergence on Heterogeneous Federated Edge Learning: An Adaptive Clustered Data Sharing Approach [27.86468387141422]
Federated Edge Learning (FEEL) emerges as a pioneering distributed machine learning paradigm for the 6G Hyper-Connectivity.
Current FEEL algorithms struggle with non-independent and non-identically distributed (non-IID) data, leading to elevated communication costs and compromised model accuracy.
We introduce a clustered data sharing framework, mitigating data heterogeneity by selectively sharing partial data from cluster heads to trusted associates.
Experiments show that the proposed framework facilitates FEEL on non-IID datasets with faster convergence rate and higher model accuracy in a limited communication environment.
arXiv Detail & Related papers (2024-06-14T07:22:39Z) - Fast networked data selection via distributed smoothed quantile estimation [6.002041236376175]
We establish a connection between selecting the most informative data and finding the top-$k$ elements of a multiset.
The top-$k$ selection in a network can be formulated as a distributed nonsmooth convex optimization problem known as quantile estimation.
We characterize the complexity required to achieve top-$k$ selection, a challenging task due to the lack of strong convexity.
arXiv Detail & Related papers (2024-06-04T03:26:15Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Evolutionary Optimization for Proactive and Dynamic Computing Resource
Allocation in Open Radio Access Network [4.9711284100869815]
Intelligent techniques are urged to achieve automatic allocation of the computing resource in Open Radio Access Network (O-RAN)
Existing problem formulation to solve this resource allocation problem is unsuitable as it defines the capacity utility of resource in an inappropriate way.
New formulation that better describes the problem is proposed.
arXiv Detail & Related papers (2022-01-12T08:52:04Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.