Fast networked data selection via distributed smoothed quantile estimation
- URL: http://arxiv.org/abs/2406.01929v1
- Date: Tue, 4 Jun 2024 03:26:15 GMT
- Title: Fast networked data selection via distributed smoothed quantile estimation
- Authors: Xu Zhang, Marcos M. Vasconcelos,
- Abstract summary: We establish a connection between selecting the most informative data and finding the top-$k$ elements of a multiset.
The top-$k$ selection in a network can be formulated as a distributed nonsmooth convex optimization problem known as quantile estimation.
We characterize the complexity required to achieve top-$k$ selection, a challenging task due to the lack of strong convexity.
- Score: 6.002041236376175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collecting the most informative data from a large dataset distributed over a network is a fundamental problem in many fields, including control, signal processing and machine learning. In this paper, we establish a connection between selecting the most informative data and finding the top-$k$ elements of a multiset. The top-$k$ selection in a network can be formulated as a distributed nonsmooth convex optimization problem known as quantile estimation. Unfortunately, the lack of smoothness in the local objective functions leads to extremely slow convergence and poor scalability with respect to the network size. To overcome the deficiency, we propose an accelerated method that employs smoothing techniques. Leveraging the piecewise linearity of the local objective functions in quantile estimation, we characterize the iteration complexity required to achieve top-$k$ selection, a challenging task due to the lack of strong convexity. Several numerical results are provided to validate the effectiveness of the algorithm and the correctness of the theory.
Related papers
- Quantization Avoids Saddle Points in Distributed Optimization [1.579622195923387]
Distributed non optimization underpins key functionalities of numerous distributed systems.
The aim of this paper is to prove that it can effectively escape saddle points convergence to a second-order stationary point convergence.
With an easily adjustable quantization, the approach allows a user control to aggressively reduce communication overhead.
arXiv Detail & Related papers (2024-03-15T15:58:20Z) - Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
We consider a joint device selection and aggregate beamforming design with the objectives of minimizing the aggregate error and maximizing the number of selected devices.
To tackle the problems in a cost-effective manner, we propose a random aggregate beamforming-based scheme.
We additionally use analysis to study the obtained aggregate error and the number of the selected devices when the number of devices becomes large.
arXiv Detail & Related papers (2024-02-20T23:59:45Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - AMS-Net: Adaptive Multiscale Sparse Neural Network with Interpretable
Basis Expansion for Multiphase Flow Problems [8.991619150027267]
We propose an adaptive sparse learning algorithm that can be applied to learn the physical processes and obtain a sparse representation of the solution given a large snapshot space.
The information of the basis functions are incorporated in the loss function, which minimizes the differences between the downscaled reduced order solutions and reference solutions at multiple time steps.
More numerical tests are performed on two-phase multiscale flow problems to show the capability and interpretability of the proposed method on complicated applications.
arXiv Detail & Related papers (2022-07-24T13:12:43Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - A Sparse Structure Learning Algorithm for Bayesian Network
Identification from Discrete High-Dimensional Data [0.40611352512781856]
This paper addresses the problem of learning a sparse structure Bayesian network from high-dimensional discrete data.
We propose a score function that satisfies the sparsity and the DAG property simultaneously.
Specifically, we use a variance reducing method in our optimization algorithm to make the algorithm work efficiently in high-dimensional data.
arXiv Detail & Related papers (2021-08-21T12:21:01Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z) - Communication-efficient Variance-reduced Stochastic Gradient Descent [0.0]
We consider the problem of communication efficient distributed optimization.
In particular, we focus on the variance-reduced gradient and propose a novel approach to make it communication-efficient.
Comprehensive theoretical and numerical analyses on real datasets reveal that our algorithm can significantly reduce the communication complexity, by as much as 95%, with almost no noticeable penalty.
arXiv Detail & Related papers (2020-03-10T13:22:16Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.