論文の概要: The Shortcomings of Force-from-Motion in Robot Learning
- arxiv url: http://arxiv.org/abs/2407.02904v1
- Date: Wed, 3 Jul 2024 08:23:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 15:05:39.429783
- Title: The Shortcomings of Force-from-Motion in Robot Learning
- Title(参考訳): ロボット学習における力移動の欠点
- Authors: Elie Aljalbout, Felix Frank, Patrick van der Smagt, Alexandros Paraschos,
- Abstract要約: 我々は、ロボット学習におけるより対話的な行動空間について論じる。
現在のロボット学習のアプローチは、インタラクションに対するポリシー制御を明示的に提供しない動き中心のアクション空間に焦点を当てている。
- 参考スコア(独自算出の注目度): 48.036338624248835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robotic manipulation requires accurate motion and physical interaction control. However, current robot learning approaches focus on motion-centric action spaces that do not explicitly give the policy control over the interaction. In this paper, we discuss the repercussions of this choice and argue for more interaction-explicit action spaces in robot learning.
- Abstract(参考訳): ロボット操作には正確な動きと物理的相互作用の制御が必要である。
しかし、現在のロボット学習アプローチでは、インタラクションのポリシーを明示的に制御しない動き中心のアクション空間に焦点が当てられている。
本稿では,この選択の反響を論じ,ロボット学習におけるより対話的な行動空間を論じる。
関連論文リスト
- Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - Real-Time Dynamic Robot-Assisted Hand-Object Interaction via Motion Primitives [45.256762954338704]
本稿では,動的ロボット支援ハンドオブジェクトインタラクションに着目した物理HRIの強化手法を提案する。
我々はトランスフォーマーに基づくアルゴリズムを用いて、1枚のRGB画像から人間の手の動きをリアルタイムに3Dモデリングする。
ロボットのアクション実装は、継続的に更新された3Dハンドモデルを使用して動的に微調整される。
論文 参考訳(メタデータ) (2024-05-29T21:20:16Z) - Learning Vision-based Pursuit-Evasion Robot Policies [54.52536214251999]
我々は、部分的に観察可能なロボットの監督を生成する完全観測可能なロボットポリシーを開発する。
我々は、RGB-Dカメラを搭載した4足歩行ロボットに、野生での追従回避のインタラクションにポリシーを展開させる。
論文 参考訳(メタデータ) (2023-08-30T17:59:05Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
強化学習はそのようなロボットコントローラを開発するための強力なフレームワークである。
分類分布を用いたマルチモーダル探索手法を提案する。
学習したポリシは外部の障害や観測ノイズに対して堅牢であり、複数のプッシュ器でタスクにスケールできることが示される。
論文 参考訳(メタデータ) (2023-08-04T16:55:00Z) - Causal Policy Gradient for Whole-Body Mobile Manipulation [39.3461626518495]
我々は、典型的なMoMaタスクのポリシーをトレーニングする新しい強化学習フレームワークであるCausal MoMaを紹介する。
異なるタスクを対象とした3種類の模擬ロボットにおけるCausal MoMaの性能評価を行った。
論文 参考訳(メタデータ) (2023-05-04T23:23:47Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - Learning Bipedal Robot Locomotion from Human Movement [0.791553652441325]
本研究では、実世界の二足歩行ロボットに、モーションキャプチャーデータから直接の動きを教えるための強化学習に基づく手法を提案する。
本手法は,シミュレーション環境下でのトレーニングから,物理ロボット上での実行へシームレスに移行する。
本研究では,ダイナミックウォークサイクルから複雑なバランスや手振りに至るまでの動作を内製したヒューマノイドロボットについて実演する。
論文 参考訳(メタデータ) (2021-05-26T00:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。