論文の概要: Better Think with Tables: Leveraging Tables to Enhance Large Language Model Comprehension
- arxiv url: http://arxiv.org/abs/2412.17189v1
- Date: Sun, 22 Dec 2024 23:31:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:59:08.341127
- Title: Better Think with Tables: Leveraging Tables to Enhance Large Language Model Comprehension
- Title(参考訳): テーブルをよりよく考える: 大規模言語モデルの理解を促進するためにテーブルを活用する
- Authors: Jio Oh, Geon Heo, Seungjun Oh, Jindong Wang, Xing Xie, Steven Euijong Whang,
- Abstract要約: テーブルを用いた思考は、大型ランガウジモデル(LLM)が、人間の認知行動と整合する中間思考にテーブルを活用するのを支援する技術である。
提案手法は,40.29%の平均相対的な性能向上,ロバスト性の向上,異なる要求,条件,シナリオに対する一般化性を示す。
- 参考スコア(独自算出の注目度): 33.32086403802351
- License:
- Abstract: Despite the recent advancement of Large Langauge Models (LLMs), they struggle with complex queries often involving multiple conditions, common in real-world scenarios. We propose Thinking with Tables, a technique that assists LLMs to leverage tables for intermediate thinking aligning with human cognitive behavior. By introducing a pre-instruction that triggers an LLM to organize information in tables, our approach achieves a 40.29\% average relative performance increase, higher robustness, and show generalizability to different requests, conditions, or scenarios. We additionally show the influence of data structuredness for the model by comparing results from four distinct structuring levels that we introduce.
- Abstract(参考訳): 近年のLarge Langauge Models (LLM) の発展にもかかわらず、現実のシナリオでは一般的な複数の条件を含む複雑なクエリに苦慮している。
本研究では,人間の認知行動に整合した中間思考のための表の活用を支援する手法であるThinking with Tablesを提案する。
テーブル内の情報を整理するために LLM を起動する事前命令を導入することで、我々の手法は40.29 % の平均相対的な性能向上、高いロバスト性、異なる要求、条件、シナリオに対する一般化性を示す。
さらに,導入した4つの異なる構造レベルの結果を比較することで,モデルに対するデータ構造化の影響を示す。
関連論文リスト
- Tree-of-Table: Unleashing the Power of LLMs for Enhanced Large-Scale Table Understanding [42.841205217768106]
トレー・オブ・タブル(Tree-of-Table)は、LLMが大規模で複雑なテーブル上での推論能力を高めるために設計された新しいアプローチである。
Tree-of-Tableは優れた性能を持つ新しいベンチマークをセットし、大規模テーブル推論における顕著な効率性と一般化能力を示す。
論文 参考訳(メタデータ) (2024-11-13T11:02:04Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
本稿では,スキーママッチングのための合成言語モデルプログラムを提案する。
Matchmakerは、ラベル付きデモを必要とせずに、ゼロショットで自己改善する。
実証的に、Matchmakerが以前のMLベースのアプローチより優れている実世界の医療スキーママッチングベンチマークを実証する。
論文 参考訳(メタデータ) (2024-10-31T16:34:03Z) - TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG(TableRAG)は、LMベースのテーブル理解用に特別に設計された検索拡張生成(RAG)フレームワークである。
TableRAGは、スキーマとセル検索を組み合わせたクエリ拡張を活用して、LMにそれを提供する前に重要な情報をピンポイントする。
以上の結果から,TableRAGは検索精度が向上し,大規模テーブル理解における最先端性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-07T04:15:02Z) - FLEXTAF: Enhancing Table Reasoning with Flexible Tabular Formats [48.47559543509975]
フレキシブルフォーマットを用いてテーブル推論性能を向上させるためのFLEXTAF-SingleとFLEXTAF-Voteを提案する。
WikiTableQuestionsとTabFactに関する我々の実験は、平均的な2.3%と4.8%の大幅な改善を示している。
論文 参考訳(メタデータ) (2024-08-16T17:00:11Z) - ALTER: Augmentation for Large-Table-Based Reasoning [5.164923314261229]
ALTER(Augmentation for Large-Table-Based Reasoning)は、NL (Free-form Natural Language) とNL (Augmentation for Large-Table-Based Reasoning) の双方の質問において、潜在的な拡張可能性を活用するために設計されたフレームワークである。
テーブルからの関連データの小さなサブセットのみを利用することで、ALTERはテーブルベースの推論ベンチマークで優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-07-03T12:34:45Z) - Multimodal Table Understanding [26.652797853893233]
直感的な視覚情報を使ってテーブルを直接理解する方法は、より実用的なアプリケーションを開発する上で極めて重要かつ緊急の課題である。
そこで我々は,様々なテーブル関連要求に対して,モデルが正しい応答を生成する必要がある,新しい問題であるマルチモーダルテーブル理解を提案する。
汎用マルチモーダル大言語モデル(MLLM)であるTable-LLaVAを開発した。
論文 参考訳(メタデータ) (2024-06-12T11:27:03Z) - TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios [52.73289223176475]
TableLLMは、13億のパラメータを持つ堅牢な大規模言語モデル(LLM)である。
TableLLMはデータ操作タスクを巧みに扱うために構築されている。
我々は、ユーザインタラクションのためのモデルチェックポイント、ソースコード、ベンチマーク、Webアプリケーションをリリースした。
論文 参考訳(メタデータ) (2024-03-28T11:21:12Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - HeLM: Highlighted Evidence augmented Language Model for Enhanced Table-to-Text Generation [7.69801337810352]
LLaMA2モデル上でパラメータ効率の良い微調整を行う。
我々のアプローチは、テーブル固有の行データを強調することにより、推論情報を入力に注入することである。
FetaQAデータセットとQTSummデータセットの両方で、我々のアプローチは最先端の結果を得た。
論文 参考訳(メタデータ) (2023-11-15T12:02:52Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
テーブルセマンティック解析のための効果的な事前学習手法GraPPaを提案する。
我々は、同期文脈自由文法を用いて、高自由度テーブル上に合成質問ペアを構築する。
実世界のデータを表現できるモデルの能力を維持するため、マスキング言語モデリングも含んでいる。
論文 参考訳(メタデータ) (2020-09-29T08:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。