論文の概要: Incremental Gauss--Newton Methods with Superlinear Convergence Rates
- arxiv url: http://arxiv.org/abs/2407.03195v1
- Date: Wed, 3 Jul 2024 15:26:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 13:37:05.928580
- Title: Incremental Gauss--Newton Methods with Superlinear Convergence Rates
- Title(参考訳): インクリメンタルガウス--超線形収束率を持つニュートン法
- Authors: Zhiling Zhou, Zhuanghua Liu, Chengchang Liu, Luo Luo,
- Abstract要約: Incrmental Gauss--Newton(IGN)法を明示的な超線形収束速度で導入する。
特に、有限サム構造を持つ非線形最小二乗で問題を定式化する。
また、より高速な超線形収束率を得るIGN法に対するミニバッチ拡張も提供する。
- 参考スコア(独自算出の注目度): 16.92437325972209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the challenge of solving large-scale nonlinear equations with H\"older continuous Jacobians. We introduce a novel Incremental Gauss--Newton (IGN) method within explicit superlinear convergence rate, which outperforms existing methods that only achieve linear convergence rate. In particular, we formulate our problem by the nonlinear least squares with finite-sum structure, and our method incrementally iterates with the information of one component in each round. We also provide a mini-batch extension to our IGN method that obtains an even faster superlinear convergence rate. Furthermore, we conduct numerical experiments to show the advantages of the proposed methods.
- Abstract(参考訳): 本稿では,H\"古い連続ジャコビアンを用いた大規模非線形方程式の解法について述べる。
本稿では, 線形収束率のみを達成する既存手法より優れる新しいインクリメンタルガウス-ニュートン法(IGN)を導入する。
特に、有限サム構造を持つ非線形最小二乗法で問題を定式化し、各ラウンドにおける各成分の情報と漸進的に反復する。
また、より高速な超線形収束率を得るIGN法に対するミニバッチ拡張も提供する。
さらに,提案手法の利点を示す数値実験を行った。
関連論文リスト
- Incremental Quasi-Newton Methods with Faster Superlinear Convergence
Rates [50.36933471975506]
各成分関数が強く凸であり、リプシッツ連続勾配とヘシアンを持つ有限和最適化問題を考える。
最近提案されたインクリメンタル準ニュートン法は、BFGSの更新に基づいて、局所的な超線形収束率を達成する。
本稿では、対称ランク1更新をインクリメンタルフレームワークに組み込むことにより、より効率的な準ニュートン法を提案する。
論文 参考訳(メタデータ) (2024-02-04T05:54:51Z) - Limited-Memory Greedy Quasi-Newton Method with Non-asymptotic
Superlinear Convergence Rate [37.49160762239869]
本稿では,非漸近性超線形速度を明示的に達成できるリミテッドメモリGreedy BFGS(LG-BFGS)法を提案する。
我々の確立した非漸近超線形収束速度は、収束速度とメモリ要求との明確なトレードオフを示す。
論文 参考訳(メタデータ) (2023-06-27T12:59:56Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Online Learning Guided Curvature Approximation: A Quasi-Newton Method
with Global Non-Asymptotic Superlinear Convergence [22.286753988825048]
非漸近的超線形収束率を明示する最初の大域的収束準ニュートン法を提案する。
古典的準ニュートン法とは異なり、我々はハイブリッド近位外勾配法に基づいてアルゴリズムを構築する。
論文 参考訳(メタデータ) (2023-02-16T20:58:09Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Distributed Second Order Methods with Fast Rates and Compressed
Communication [6.069611493148631]
分散最適化のための通信効率の高い第2次手法を複数開発する。
我々は大域的な部分線型および線形収束率と高速超線形速度を証明した。
結果は実データセットでの実験結果と共にサポートされます。
論文 参考訳(メタデータ) (2021-02-14T14:06:45Z) - A Bregman Method for Structure Learning on Sparse Directed Acyclic
Graphs [84.7328507118758]
構造学習のためのBregman近位勾配法を開発した。
高い非線形反復に対する曲率の影響を計測する。
様々な合成および実集合上で本手法をテストする。
論文 参考訳(メタデータ) (2020-11-05T11:37:44Z) - Random extrapolation for primal-dual coordinate descent [61.55967255151027]
本稿では,データ行列の疎度と目的関数の好適な構造に適応する,ランダムに外挿した原始-双対座標降下法を提案する。
一般凸凹の場合, 主対差と目的値に対するシーケンスのほぼ確実に収束と最適サブ線形収束率を示す。
論文 参考訳(メタデータ) (2020-07-13T17:39:35Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Non-asymptotic Superlinear Convergence of Standard Quasi-Newton Methods [26.328847475942894]
準ニュートンアルゴリズムのブロイデン級の非漸近超線型収束速度を証明した。
この結果は, 準ニュートン法に対する非漸近超線形収束率を示すのが最初である。
論文 参考訳(メタデータ) (2020-03-30T16:42:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。