論文の概要: NewVEM: A Newton Vertex Exchange Method for a Class of Constrained Self-Concordant Minimization Problems
- arxiv url: http://arxiv.org/abs/2407.03294v2
- Date: Tue, 14 Oct 2025 19:23:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.228484
- Title: NewVEM: A Newton Vertex Exchange Method for a Class of Constrained Self-Concordant Minimization Problems
- Title(参考訳): NewVEM:制約付き自己一致最小化問題に対するニュートン頂点交換法
- Authors: Ling Liang, Kim-Chuan Toh, Haizhao Yang,
- Abstract要約: 一般化された単純点への射影を計算するための高効率半平滑なニュートン法を提案し,解析する。
提案アルゴリズムの実用的な性能を数値実験により実証した。
- 参考スコア(独自算出の注目度): 13.365308428809849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose \textbf{NewVEM}, a Newton vertex exchange method for efficiently solving self-concordant minimization problems under generalized simplex constraints. The algorithm features a two-level structure: the outer loop employs a projected Newton method, and the inner loop uses a vertex exchange approach to solve strongly convex quadratic subproblems. Both loops converge locally at linear rates under technical conditions, resulting in a ``fast $\times$ fast'' framework that demonstrates high efficiency and scalability in practice. To get a feasible initial point to execute the algorithm, we also present and analyze a highly efficient semismooth Newton method for computing the projection onto the generalized simplex. The excellent practical performance of the proposed algorithms is demonstrated by a set of numerical experiments. Our results further motivate the potential real-world applications of the considered model and the proposed algorithms.
- Abstract(参考訳): 一般化された単純制約下での自己一致最小化問題を効率的に解くために,ニュートンの頂点交換法である \textbf{NewVEM} を提案する。
このアルゴリズムは2段階構造を特徴とし、外側ループは射影ニュートン法、内側ループは頂点交換法を用いて強い凸2次サブプロブレムを解く。
どちらのループも技術的条件下ではリニアレートで局所的に収束し、結果として ``fast $\times$ fast'' フレームワークが実際に高い効率とスケーラビリティを示す。
アルゴリズムを実行するための実現可能な初期点を得るために、一般化された単純点への投影を計算するための高効率半平滑なニュートン法を提示し、解析する。
提案アルゴリズムの実用的な性能を数値実験により実証した。
提案手法は,提案モデルと提案アルゴリズムの潜在的な実世界の応用を動機づけるものである。
関連論文リスト
- A Robust Algorithm for Non-IID Machine Learning Problems with Convergence Analysis [2.4462606119036456]
本研究では,非滑らかな最適化,二次計画法,反復過程に基づく最小値問題の解法を改良した数値アルゴリズムを提案する。
このようなアルゴリズムは、ロバスト最適化や不均衡学習など、様々な分野に広く適用することができる。
論文 参考訳(メタデータ) (2025-07-01T14:41:59Z) - Local Linear Convergence of Infeasible Optimization with Orthogonal Constraints [12.414718831844041]
効率的な代替手段として、不可能なリトラクションに基づくアプローチが提案された。
本稿では,ニューラルネットワークPL条件のみを用いたスムーズな非自由成分分析のための新しいランディングアルゴリズムを確立する。
数値実験により、ランディングアルゴリズムは、計算オーバーヘッドを大幅に削減した最先端のリトラクションベース手法と同等に動作することを示した。
論文 参考訳(メタデータ) (2024-12-07T16:02:27Z) - Bregman-divergence-based Arimoto-Blahut algorithm [53.64687146666141]
本稿では,Arimoto-BlahutアルゴリズムをBregman-Diversergenceシステム上で定義された一般関数に一般化する。
本稿では,古典的および量子速度歪み理論に適用可能な凸最適化自由アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-10T06:16:24Z) - Convex Q Learning in a Stochastic Environment: Extended Version [1.680268810119084]
本稿では,関数近似を用いたマルコフ決定過程に対する凸Q-ラーニングの最初の定式化について紹介する。
提案アルゴリズムは収束し, 平均二乗感覚における収束率を求める新しい手法が導入された。
この理論は古典的な在庫管理問題への応用として説明されている。
論文 参考訳(メタデータ) (2023-09-10T18:24:43Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Bounded Projection Matrix Approximation with Applications to Community
Detection [1.8876415010297891]
我々は,新たな微分可能凸ペナルティを導入し,乗算器の交互方向法(ADMM)を導出する。
数値実験により,アルゴリズムの競争相手に対する優位性を実証した。
論文 参考訳(メタデータ) (2023-05-21T06:55:10Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Parabolic Relaxation for Quadratically-constrained Quadratic Programming
-- Part II: Theoretical & Computational Results [6.355764634492975]
我々は,2次制約付き二次プログラムに対する凸緩和と,ほぼ実現可能な解に対するペナル化放物緩和を導入する。
我々は, ある条件を満たす逐次点対点解から, ペナル化放物緩和収束は, カルーシュ・クーン最適正則性問題を満たすことを示した。
論文 参考訳(メタデータ) (2022-08-07T02:58:04Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained
Optimization [25.73397307080647]
本稿では,汎用凸あるいは非汎用機械目標の新しいモデルを提案する。
本稿では,各サブプロブレムの点レベルを徐々に緩和した制約を解くアルゴリズムを提案する。
我々は,新しい数値スケール問題の有効性を実証する。
論文 参考訳(メタデータ) (2020-10-23T05:24:05Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。