論文の概要: A Robust Algorithm for Non-IID Machine Learning Problems with Convergence Analysis
- arxiv url: http://arxiv.org/abs/2507.00810v1
- Date: Tue, 01 Jul 2025 14:41:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.670187
- Title: A Robust Algorithm for Non-IID Machine Learning Problems with Convergence Analysis
- Title(参考訳): 収束解析を用いた非IID機械学習問題に対するロバストアルゴリズム
- Authors: Qing Xu, Xiaohua Xuan,
- Abstract要約: 本研究では,非滑らかな最適化,二次計画法,反復過程に基づく最小値問題の解法を改良した数値アルゴリズムを提案する。
このようなアルゴリズムは、ロバスト最適化や不均衡学習など、様々な分野に広く適用することができる。
- 参考スコア(独自算出の注目度): 2.4462606119036456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an improved numerical algorithm for solving minimax problems based on nonsmooth optimization, quadratic programming and iterative process. We also provide a rigorous proof of convergence for our algorithm under some mild assumptions, such as gradient continuity and boundedness. Such an algorithm can be widely applied in various fields such as robust optimization, imbalanced learning, etc.
- Abstract(参考訳): 本稿では,非滑らかな最適化,2次プログラミング,反復処理に基づく最小値問題の解法を改良した数値アルゴリズムを提案する。
また、勾配連続性や有界性といったいくつかの軽微な仮定の下で、アルゴリズムに対する厳密な収束の証明も提供する。
このようなアルゴリズムは、ロバスト最適化や不均衡学習など、様々な分野に広く適用することができる。
関連論文リスト
- Learning based convex approximation for constrained parametric optimization [11.379408842026981]
本稿では、制約付き最適化問題を解決するために、入力ニューラルネットワーク(ICNN)に基づく自己教師付き学習フレームワークを提案する。
厳密な収束解析を行い、このフレームワークが元の問題のKKT近似点に収束することを示す。
提案手法は精度,実現可能性,計算効率の両立を実現している。
論文 参考訳(メタデータ) (2025-05-07T00:33:14Z) - Towards minimax optimal algorithms for Active Simple Hypothesis Testing [0.0]
固定予算ベストアーム識別問題の簡易な変種である能動簡易仮説テスト(ASHT)問題について検討した。
ASHT問題の上界の新たなゲーム理論の定式化を提供する。
本稿では,前処理に比べて計算能力に優れた近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-26T20:03:53Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning
Problems [0.7614628596146599]
古典的なSGDフレームワークにおける適応的なステップ長選択のための新しいアルゴリズムを提案する。
妥当な条件下では、アルゴリズムは十分に確立された理論的な要件に従ってステップ長を生成する。
このアルゴリズムは,手動チューニングから得られる最良ステップ長に匹敵するステップ長を生成することができることを示す。
論文 参考訳(メタデータ) (2023-05-17T06:22:11Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
ユークリッド凸化関数の違いは、統計学と機械学習の異なるタイプの問題の違いとして記述できることを示す。
最終的に、より広い範囲、より広い範囲の作業を支援するのです。
論文 参考訳(メタデータ) (2022-06-22T23:57:40Z) - A proximal-proximal majorization-minimization algorithm for nonconvex
tuning-free robust regression problems [4.261680642170457]
非回帰問題に対する PMM (proximal-proximal majorization-minimization) アルゴリズムを提案する。
提案アルゴリズムは既存の最先端アルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2021-06-25T15:07:13Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。