Balancing Forecast Accuracy and Switching Costs in Online Optimization of Energy Management Systems
- URL: http://arxiv.org/abs/2407.03368v5
- Date: Tue, 15 Apr 2025 15:12:35 GMT
- Title: Balancing Forecast Accuracy and Switching Costs in Online Optimization of Energy Management Systems
- Authors: Evgenii Genov, Julian Ruddick, Christoph Bergmeir, Majid Vafaeipour, Thierry Coosemans, Salvador Garcia, Maarten Messagie,
- Abstract summary: This study investigates the integration of forecasting and optimization in energy management systems.<n>We develop a theoretical and empirical framework to examine how forecast accuracy and stability interact with switching costs.
- Score: 3.3295510777293837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the integration of forecasting and optimization in energy management systems, with a focus on the role of switching costs -- penalties incurred from frequent operational adjustments. We develop a theoretical and empirical framework to examine how forecast accuracy and stability interact with switching costs in online decision-making settings. Our analysis spans both deterministic and stochastic optimization approaches, using point and probabilistic forecasts. A novel metric for measuring temporal consistency in probabilistic forecasts is introduced, and the framework is validated in a real-world battery scheduling case based on the CityLearn 2022 challenge. Results show that switching costs significantly alter the trade-off between forecast accuracy and stability, and that more stable forecasts can reduce the performance loss due to switching. Contrary to common practice, the findings suggest that, under non-negligible switching costs, longer commitment periods may lead to better overall outcomes. These insights have practical implications for the design of intelligent, forecast-aware energy management systems.
Related papers
- Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management [50.34345101758248]
We propose predict-all-then-optimize-globally (PATOG), a framework that integrates outage prediction with globally optimized interventions.
Our approach ensures spatially and temporally coherent decision-making, improving both predictive accuracy and operational efficiency.
Experiments on synthetic and real-world datasets demonstrate significant improvements in outage prediction consistency and grid resilience.
arXiv Detail & Related papers (2025-02-25T16:15:35Z) - Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market [0.0]
integration of renewable energy into electricity markets poses significant challenges to price stability.
This study explores the enhancement of probabilistic price prediction using Conformal Prediction (CP) techniques.
We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques.
arXiv Detail & Related papers (2025-02-07T13:57:47Z) - Hybrid Forecasting of Geopolitical Events [71.73737011120103]
SAGE is a hybrid forecasting system that combines human and machine generated forecasts.
The system aggregates human and machine forecasts weighting both for propinquity and based on assessed skill.
We show that skilled forecasters who had access to machine-generated forecasts outperformed those who only viewed historical data.
arXiv Detail & Related papers (2024-12-14T22:09:45Z) - Anomaly Detection in California Electricity Price Forecasting: Enhancing Accuracy and Reliability Using Principal Component Analysis [0.0]
This study focuses on enhancing electricity price forecasting in California's grid.
We analyze CAISO's hourly electricity prices and demand from 2016-2021 to improve day-ahead forecasting accuracy.
arXiv Detail & Related papers (2024-11-25T20:55:25Z) - Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
Real-world data streams can change unpredictably due to distribution shifts, feedback loops and adversarial actors.
We present a forecasting framework ensuring valid uncertainty estimates regardless of how data evolves.
arXiv Detail & Related papers (2024-09-27T21:46:42Z) - Probabilistic forecasting of power system imbalance using neural network-based ensembles [4.573008040057806]
We propose an ensemble of C-VSNs, which are our adaptation of variable selection networks (VSNs)
Each minute, our model predicts the imbalance of the current and upcoming two quarter-hours, along with uncertainty estimations on these forecasts.
For high imbalance magnitude situations, our model outperforms the state-of-the-art by 23.4%.
arXiv Detail & Related papers (2024-04-23T08:42:35Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - A Stochastic Online Forecast-and-Optimize Framework for Real-Time Energy
Dispatch in Virtual Power Plants under Uncertainty [18.485617498705736]
We propose a real-time uncertainty-aware energy dispatch framework, which is composed of two key elements.
The proposed framework is capable to rapidly adapt to the real-time data distribution, as well as to target on uncertainties caused by data drift, model discrepancy and environment perturbations in the control process.
The framework won the championship in CityLearn Challenge 2022, which provided an influential opportunity to investigate the potential of AI application in the energy domain.
arXiv Detail & Related papers (2023-09-15T00:04:00Z) - Probabilistic load forecasting with Reservoir Computing [10.214379018902914]
This work focuses on reservoir computing as the core time series forecasting method.
While the RC literature mostly focused on point forecasting, this work explores the compatibility of some popular uncertainty quantification methods with the reservoir setting.
arXiv Detail & Related papers (2023-08-24T15:07:08Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Regions of Reliability in the Evaluation of Multivariate Probabilistic
Forecasts [73.33395097728128]
We provide the first systematic finite-sample study of proper scoring rules for time-series forecasting evaluation.
We carry out our analysis on a comprehensive synthetic benchmark, specifically designed to test several key discrepancies between ground-truth and forecast distributions.
arXiv Detail & Related papers (2023-04-19T17:38:42Z) - Comparison and Evaluation of Methods for a Predict+Optimize Problem in
Renewable Energy [42.00952788334554]
This paper presents the findings of the IEEE-CIS Technical Challenge on Predict+ for Renewable Energy Scheduling," held in 2021.
We present a comparison and evaluation of the seven highest-ranked solutions in the competition.
The winning method predicted different scenarios and optimized over all scenarios using a sample average approximation method.
arXiv Detail & Related papers (2022-12-21T02:34:12Z) - How to predict and optimise with asymmetric error metrics [0.0]
We examine the concept of the predict and optimise problem with specific reference to the third Technical Challenge of the IEEE Computational Intelligence Society.
In this competition, entrants were asked to forecast building energy use and solar generation at six buildings and six solar installations, and then use their forecast to optimize energy cost while scheduling classes and batteries over a month.
We explore the different nature of loss functions for the prediction and optimisation phase and propose to adjust the final forecasts for a better optimisation cost.
arXiv Detail & Related papers (2022-11-24T13:16:45Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Right Decisions from Wrong Predictions: A Mechanism Design Alternative
to Individual Calibration [107.15813002403905]
Decision makers often need to rely on imperfect probabilistic forecasts.
We propose a compensation mechanism ensuring that the forecasted utility matches the actually accrued utility.
We demonstrate an application showing how passengers could confidently optimize individual travel plans based on flight delay probabilities.
arXiv Detail & Related papers (2020-11-15T08:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.