論文の概要: Continuous Optimization for Offline Change Point Detection and Estimation
- arxiv url: http://arxiv.org/abs/2407.03383v1
- Date: Wed, 3 Jul 2024 01:19:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 20:20:26.148229
- Title: Continuous Optimization for Offline Change Point Detection and Estimation
- Title(参考訳): オフライン切替点検出と推定のための連続最適化
- Authors: Hans Reimann, Sarat Moka, Georgy Sofronov,
- Abstract要約: これは、通常の平均多重変化点モデルを、空間性を強制する正規化統計逆問題に再構成する。
最近開発されたベストサブセット選択のための連続最適化フレームワーク(COMBSS)は、近日中に導入され、その問題に関連している。
監督・監督されていない視点は、正規化ペナルティパラメータの選択のための異なるアプローチをテストすることで探索される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work explores use of novel advances in best subset selection for regression modelling via continuous optimization for offline change point detection and estimation in univariate Gaussian data sequences. The approach exploits reformulating the normal mean multiple change point model into a regularized statistical inverse problem enforcing sparsity. After introducing the problem statement, criteria and previous investigations via Lasso-regularization, the recently developed framework of continuous optimization for best subset selection (COMBSS) is briefly introduced and related to the problem at hand. Supervised and unsupervised perspectives are explored with the latter testing different approaches for the choice of regularization penalty parameters via the discrepancy principle and a confidence bound. The main result is an adaptation and evaluation of the COMBSS approach for offline normal mean multiple change-point detection via experimental results on simulated data for different choices of regularisation parameters. Results and future directions are discussed.
- Abstract(参考訳): この研究は、一変量ガウスデータ列におけるオフライン変化点の検出と推定のための連続最適化による回帰モデリングのためのベストサブセット選択における新しい進歩を探求する。
このアプローチは、通常の平均多重変化点モデルを、間隔を強制する正規化統計逆問題に再構成する。
問題文, 基準, 先行調査をLasso-regularizationを通じて導入した後, 最近開発された, ベストサブセット選択(COMBSS)のための連続最適化フレームワークを手近に紹介し, 課題に関連づける。
教師なしの視点は、不一致原理と信頼境界を通した正規化ペナルティパラメータの選択のために、後者のテストによって検討される。
本研究の主な成果は、正則化パラメータの異なる選択のためのシミュレーションデータに対する実験結果による、オフライン正規化平均多重変化点検出のためのCOMBSSアプローチの適応と評価である。
結果と今後の方向性について論じる。
関連論文リスト
- Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
オンライン報酬指標の偏りのないオフライン推定を最適化する意思決定ポリシーを学習することを目指している。
学習シナリオにおける同値性に基づく単一のフレームワークを提案する。
我々のフレームワークは、分散最適非バイアス推定器の特徴付けを可能にし、それに対する閉形式解を提供する。
論文 参考訳(メタデータ) (2024-05-09T12:52:22Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy
Optimization [63.32053223422317]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
特に、MDP上の分布によって誘導される値の分散を特徴付けることに焦点をあてる。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
TTA(Test-Time Adaptation)は、分散シフトの下で堅牢性に取り組むための有望なアプローチとして登場した。
TTABは,10の最先端アルゴリズム,多種多様な分散シフト,および2つの評価プロトコルを含むテスト時間適応ベンチマークである。
論文 参考訳(メタデータ) (2023-06-06T09:35:29Z) - Online Statistical Inference for Contextual Bandits via Stochastic
Gradient Descent [10.108468796986074]
意思決定の文脈的包括的枠組みにおけるモデルパラメータのオンライン統計的推測について検討する。
本稿では,重み付き勾配勾配による決定規則の更新が可能な,オンラインおよび適応型データ収集環境のための汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-30T18:57:08Z) - A Contrastive Approach to Online Change Point Detection [4.762323642506733]
オンライン変更点検出のための新しい手順を提案する。
提案手法は,変化前分布と変化後分布との差分尺度を最大化するものである。
術式の平均走行距離と検出遅延に対する非漸近的境界を証明した。
論文 参考訳(メタデータ) (2022-06-21T07:01:36Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
帰納バイアスは 経験的に過剰フィットを防げる中心的存在です
この研究は、この問題を最も基本的な設定として考慮している: 線形回帰に対する定数ステップサイズ SGD。
我々は、(正規化されていない)SGDで得られるアルゴリズム正則化と、通常の最小二乗よりも多くの顕著な違いを反映する。
論文 参考訳(メタデータ) (2021-03-23T17:15:53Z) - Variational Nonlinear System Identification [0.8793721044482611]
本稿では,非線形状態空間モデルに対するパラメータ推定について検討する。
我々は,最大確率推定に深いつながりを持つ原理的手法である変分推論(vi)アプローチを採用する。
このviアプローチは最終的に、決定論的で扱いやすく、標準最適化ツールを使って解決できる最適化問題の解としてモデルの推定を提供する。
論文 参考訳(メタデータ) (2020-12-08T05:43:50Z) - Variable selection for Gaussian process regression through a sparse
projection [0.802904964931021]
本稿では,ガウス過程(GP)レグレッションと統合された新しい変数選択手法を提案する。
パラメータの調整と推定の精度を,選択したベンチマーク手法を用いて評価した。
論文 参考訳(メタデータ) (2020-08-25T01:06:10Z) - Online detection of local abrupt changes in high-dimensional Gaussian
graphical models [13.554038901140949]
高次元ガウス図形モデル(GGM)における変化点をオンライン手法で同定する問題は、生物学、経済学、社会科学に新たな応用が加えられたため、興味深い。
我々は、この問題に対処する新しいテストを開発する。これは、入力データの適切な選択された部分の正規化共分散行列の$ell_infty$ノルムに基づいている。
論文 参考訳(メタデータ) (2020-03-16T00:41:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。