論文の概要: Towards Asimov's Psychohistory: Harnessing Topological Data Analysis, Artificial Intelligence and Social Media data to Forecast Societal Trends
- arxiv url: http://arxiv.org/abs/2407.03446v1
- Date: Wed, 3 Jul 2024 18:44:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 20:10:41.335544
- Title: Towards Asimov's Psychohistory: Harnessing Topological Data Analysis, Artificial Intelligence and Social Media data to Forecast Societal Trends
- Title(参考訳): アシモフの心理史 : 社会トレンド予測のためのトポロジカルデータ分析、人工知能、ソーシャルメディアデータ
- Authors: Isabela Rocha,
- Abstract要約: ビッグデータや高度な計算手法の時代には、大規模社会行動の予測がますます実現可能になっている。
本稿では,計算能力と数学的枠組みの統合を理論的に検討する。
これらのツールは、大きなコミュニティのダイナミクスに前例のない明快さをもたらしている、と私は論じます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the age of big data and advanced computational methods, the prediction of large-scale social behaviors, reminiscent of Isaac Asimov's fictional science of Psychohistory, is becoming increasingly feasible. This paper consists of a theoretical exploration of the integration of computational power and mathematical frameworks, particularly through Topological Data Analysis (TDA) (Carlsson, Vejdemo-Johansson, 2022) and Artificial Intelligence (AI), to forecast societal trends through social media data analysis. By examining social media as a reflective surface of collective human behavior through the systematic behaviorist approach (Glenn, et al., 2016), I argue that these tools provide unprecedented clarity into the dynamics of large communities. This study dialogues with Asimov's work, drawing parallels between his visionary concepts and contemporary methodologies, illustrating how modern computational techniques can uncover patterns and predict shifts in social behavior, contributing to the emerging field of digital sociology -- or even, Psychohistory itself.
- Abstract(参考訳): ビッグデータと高度な計算手法の時代には、アイザック・アシモフの架空の心理史学を思い起こさせる大規模な社会行動の予測がますます実現可能になっている。
本稿では,特にTDA(Topological Data Analysis, Carlsson, Vejdemo-Johansson, 2022)とAI(Artificial Intelligence, AI)を通じて,計算能力と数学的枠組みの統合を理論的に検討し,ソーシャルメディアデータ分析による社会的傾向の予測を行う。
組織的行動主義的アプローチ(Glenn, et al , 2016)を通じて、ソーシャルメディアを集団行動の反射面として考察することにより、これらのツールが大規模コミュニティのダイナミクスに前例のない明確性をもたらすと論じる。
この研究は、アシモフの研究と対話し、彼の幻想的概念と現代の方法論の類似性を描き、現代の計算技術がいかにしてパターンを発見し、社会行動の変化を予測するかを示し、デジタル社会学の新たな分野、あるいは心理学そのものに寄与する。
関連論文リスト
- AI and Social Theory [0.0]
我々は、人工知能(AI)が意味するものを定義することから始まる、AI駆動型社会理論のプログラムをスケッチする。
そして、AIベースのモデルがデジタルデータの可用性を増大させ、予測力に基づいて異なる社会的理論の有効性をテストするためのモデルを構築します。
論文 参考訳(メタデータ) (2024-07-07T12:26:16Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
ソーシャルインテリジェントAIエージェント(Social-AI)の構築は、多分野、マルチモーダルな研究目標である。
我々は、社会AIを前進させるために、基礎となる技術的課題と、コンピューティングコミュニティ全体にわたる研究者のためのオープンな質問を特定します。
論文 参考訳(メタデータ) (2024-04-17T02:57:42Z) - Social Intelligence Data Infrastructure: Structuring the Present and Navigating the Future [59.78608958395464]
私たちは、包括的な社会AI分類と480のNLPデータセットからなるデータライブラリで構成される、ソーシャルAIデータインフラストラクチャを構築しています。
インフラストラクチャにより、既存のデータセットの取り組みを分析し、異なるソーシャルインテリジェンスの観点から言語モデルのパフォーマンスを評価することができます。
多面的なデータセットの必要性、言語と文化の多様性の向上、より長期にわたる社会的状況、そして将来のソーシャルインテリジェンスデータ活動におけるよりインタラクティブなデータの必要性が示されている。
論文 参考訳(メタデータ) (2024-02-28T00:22:42Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Predicting Opinion Dynamics via Sociologically-Informed Neural Networks [31.77040611129394]
本稿では,理論モデルとソーシャルメディアデータを統合した社会学的インフォームドニューラルネットワーク(SINN)を提案する。
特に、理論モデルを常微分方程式(ODE)として再キャストする。
我々は、データを同時に近似し、社会科学的知識を表すODEに適合するニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2022-07-07T05:55:47Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Social Neuro AI: Social Interaction as the "dark matter" of AI [0.0]
我々は、社会心理学と社会神経科学の実証結果と力学の枠組みが、よりインテリジェントな人工エージェントの開発にインスピレーションを与えることができると主張している。
論文 参考訳(メタデータ) (2021-12-31T13:41:53Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
私たちは、物理的に根拠のある抽象的なソーシャルイベント、フェーズのデータセットを作成します。
フェーズは人間の実験によって検証され、人間は社会出来事において豊かな相互作用を知覚する。
ベースラインモデルとして,最新のフィードフォワードニューラルネットワークよりも優れたベイズ逆計画手法SIMPLEを導入する。
論文 参考訳(メタデータ) (2021-03-02T18:44:57Z) - Recursive Social Behavior Graph for Trajectory Prediction [49.005219590582676]
我々は、グループベースのアノテーションによって管理される社会表現を、再帰的社会行動グラフと呼ばれる社会行動グラフに定式化する。
再帰的社会行動グラフ(Recursive Social Behavior Graph)のガイダンスにより、EDHおよびUCYデータセットにおける最先端の手法をADEの11.1%、FDEの10.8%で上回る。
論文 参考訳(メタデータ) (2020-04-22T06:01:48Z) - Theory In, Theory Out: The uses of social theory in machine learning for
social science [3.180013942295509]
機械学習パイプラインの各段階で生じる基本的な方法論的および解釈的疑問に、社会理論がどのように答えられるかを示す。
本論文は,機械学習のツールをソーシャルデータに適用する際の現実的な疑問を,コンピュータや社会科学者のガイドとして扱うことができると考えている。
論文 参考訳(メタデータ) (2020-01-09T20:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。