論文の概要: AI and Social Theory
- arxiv url: http://arxiv.org/abs/2407.06233v1
- Date: Sun, 7 Jul 2024 12:26:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 22:22:56.650264
- Title: AI and Social Theory
- Title(参考訳): AIと社会理論
- Authors: Jakob Mokander, Ralph Schroeder,
- Abstract要約: 我々は、人工知能(AI)が意味するものを定義することから始まる、AI駆動型社会理論のプログラムをスケッチする。
そして、AIベースのモデルがデジタルデータの可用性を増大させ、予測力に基づいて異なる社会的理論の有効性をテストするためのモデルを構築します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we sketch a programme for AI driven social theory. We begin by defining what we mean by artificial intelligence (AI) in this context. We then lay out our model for how AI based models can draw on the growing availability of digital data to help test the validity of different social theories based on their predictive power. In doing so, we use the work of Randall Collins and his state breakdown model to exemplify that, already today, AI based models can help synthesize knowledge from a variety of sources, reason about the world, and apply what is known across a wide range of problems in a systematic way. However, we also find that AI driven social theory remains subject to a range of practical, technical, and epistemological limitations. Most critically, existing AI systems lack three essential capabilities needed to advance social theory in ways that are cumulative, holistic, open-ended, and purposeful. These are (1) semanticization, i.e., the ability to develop and operationalize verbal concepts to represent machine-manipulable knowledge, (2) transferability, i.e., the ability to transfer what has been learned in one context to another, and (3) generativity, i.e., the ability to independently create and improve on concepts and models. We argue that if the gaps identified here are addressed by further research, there is no reason why, in the future, the most advanced programme in social theory should not be led by AI-driven cumulative advances.
- Abstract(参考訳): 本稿では,AI駆動型社会理論のプログラムをスケッチする。
この文脈で人工知能(AI)が意味するものを定義することから始めます。
そして、AIベースのモデルがデジタルデータの可用性を増大させ、予測力に基づいて異なる社会的理論の有効性をテストするためのモデルを構築します。
そのために、Randall Collinsと彼の状態分解モデルを使って、AIベースのモデルは、すでにさまざまなソースからの知識を合成し、世界を推論し、さまざまな問題で知られていることを体系的な方法で適用することができることを実証しています。
しかし、AIによって駆動される社会理論は、実用的、技術的、認識論的に制限される範囲に留まっていることもわかっています。
最も重要なのは、既存のAIシステムには、累積的、全体的、オープンエンド、目的のある方法で社会理論を前進させるために必要な3つの必須機能がないことだ。
これらは(1)意味論、すなわち、機械操作可能な知識を表現するために言語概念を開発・運用する能力、(2)伝達可能性、すなわち、ある文脈で学んだものを別の文脈に転送する能力、(3)生成性、すなわち、概念やモデル上で独立して作成・改善する能力である。
ここで確認されたギャップが更なる研究によって解決されるならば、将来、社会理論における最も高度なプログラムがAI駆動の累積的な進歩によって導かれるべきではない理由はない、と我々は主張する。
関連論文リスト
- Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
ソーシャルインテリジェントAIエージェント(Social-AI)の構築は、多分野、マルチモーダルな研究目標である。
我々は、社会AIを前進させるために、基礎となる技術的課題と、コンピューティングコミュニティ全体にわたる研究者のためのオープンな質問を特定します。
論文 参考訳(メタデータ) (2024-04-17T02:57:42Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - A call for embodied AI [1.7544885995294304]
我々は、人工知能の次の基本ステップとして、エンボディードAIを提案する。
Embodied AIの範囲を広げることで、認知アーキテクチャに基づく理論的枠組みを導入する。
このフレームワークはFristonのアクティブな推論原則と一致しており、EAI開発に対する包括的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-02-06T09:11:20Z) - General Purpose Artificial Intelligence Systems (GPAIS): Properties,
Definition, Taxonomy, Societal Implications and Responsible Governance [16.030931070783637]
汎用人工知能システム(GPAIS)は、これらのAIシステムを指すものとして定義されている。
これまで、人工知能の可能性は、まるで人間であるかのように知的タスクを実行するのに十分強力であり、あるいはそれを改善することさえ可能であり、いまだに願望、フィクションであり、我々の社会にとっての危険であると考えられてきた。
本研究は,GPAISの既存の定義について論じ,その特性や限界に応じて,GPAISの種類間で段階的な分化を可能にする新しい定義を提案する。
論文 参考訳(メタデータ) (2023-07-26T16:35:48Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Artificial Intelligence: 70 Years Down the Road [4.952211615828121]
我々は、過去の失敗の背後にある理由と現在のAIの成功を理解するために、技術的および哲学的な視点から理由を分析しました。
我々は、AIの持続可能な開発方向性は、人間と機械のコラボレーションと、コンピュータパワーを中心とした技術パスであるべきだと結論付けている。
論文 参考訳(メタデータ) (2023-03-06T01:19:25Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
我々は世界モデルと予測符号化の2つの概念に焦点を当てる。
神経科学において、予測符号化は、脳がその入力を継続的に予測し、その環境における自身のダイナミクスと制御行動のモデル化に適応するように提案する。
論文 参考訳(メタデータ) (2023-01-14T06:38:14Z) - Artificial intelligence in government: Concepts, standards, and a
unified framework [0.0]
人工知能(AI)の最近の進歩は、政府の変革を約束している。
新しいAIシステムは、社会の規範的な期待に沿うように振る舞うことが重要である。
論文 参考訳(メタデータ) (2022-10-31T10:57:20Z) - Thinking Fast and Slow in AI: the Role of Metacognition [35.114607887343105]
最先端のAIには、(人間)インテリジェンスの概念に自然に含まれる多くの能力がない。
私たちは、人間がこれらの能力を持つことができるメカニズムをよりよく研究することで、これらの能力でAIシステムを構築する方法を理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-05T06:05:38Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。