論文の概要: A Fully Parameter-Free Second-Order Algorithm for Convex-Concave Minimax Problems with Optimal Iteration Complexity
- arxiv url: http://arxiv.org/abs/2407.03571v1
- Date: Thu, 4 Jul 2024 01:46:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 19:31:32.454410
- Title: A Fully Parameter-Free Second-Order Algorithm for Convex-Concave Minimax Problems with Optimal Iteration Complexity
- Title(参考訳): 最適反復複素数をもつ凸凹最小値問題に対する完全パラメータフリー2次アルゴリズム
- Authors: Junlin Wang, Junnan Yang, Zi Xu,
- Abstract要約: 凸凹極小最適化問題の解法として,Lipschitz-free Cubal regularization (LF-CR)アルゴリズムを提案する。
また,この問題のパラメータを必要としない完全パラメータフリー立方正則化(FF-CR)アルゴリズムを提案する。
我々の知る限り、FF-CRアルゴリズムは凸凹極小最適化問題の解法として初めて完全にパラメータフリーな2次アルゴリズムである。
- 参考スコア(独自算出の注目度): 2.815239177328595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study second-order algorithms for the convex-concave minimax problem, which has attracted much attention in many fields such as machine learning in recent years. We propose a Lipschitz-free cubic regularization (LF-CR) algorithm for solving the convex-concave minimax optimization problem without knowing the Lipschitz constant. It can be shown that the iteration complexity of the LF-CR algorithm to obtain an $\epsilon$-optimal solution with respect to the restricted primal-dual gap is upper bounded by $\mathcal{O}(\frac{\rho\|z^0-z^*\|^3}{\epsilon})^{\frac{2}{3}}$, where $z^0=(x^0,y^0)$ is a pair of initial points, $z^*=(x^*,y^*)$ is a pair of optimal solutions, and $\rho$ is the Lipschitz constant. We further propose a fully parameter-free cubic regularization (FF-CR) algorithm that does not require any parameters of the problem, including the Lipschitz constant and the upper bound of the distance from the initial point to the optimal solution. We also prove that the iteration complexity of the FF-CR algorithm to obtain an $\epsilon$-optimal solution with respect to the gradient norm is upper bounded by $\mathcal{O}(\frac{\rho\|z^0-z^*\|^2}{\epsilon})^{\frac{2}{3}}$. Numerical experiments show the efficiency of both algorithms. To the best of our knowledge, the proposed FF-CR algorithm is the first completely parameter-free second-order algorithm for solving convex-concave minimax optimization problems, and its iteration complexity is consistent with the optimal iteration complexity lower bound of existing second-order algorithms with parameters for solving convex-concave minimax problems.
- Abstract(参考訳): 本稿では,近年,機械学習など多くの分野において注目されている凸凹ミニマックス問題の2次アルゴリズムについて検討する。
リプシッツ定数を知らずに凸凹極小最適化問題を解くために,Lipschitz-free Cubal regularization (LF-CR)アルゴリズムを提案する。
制限された原始-双対ギャップに対する$\epsilon$-最適解を得るLF-CRアルゴリズムの反復複雑性は、$\mathcal{O}(\frac {\rho\|z^0-z^*\|^3}{\epsilon})^{\frac{2}{3}}$, ここで$z^0=(x^0,y^0)$は初期点の対であり、$z^*=(x^*,y^*)$は最適解の対であり、$\rho$はリプシッツ定数である。
さらに、リプシッツ定数や初期点から最適解までの距離の上界を含む問題のパラメータを必要としない完全パラメータフリーな立方正則化(FF-CR)アルゴリズムを提案する。
また、勾配ノルムに対する$\epsilon$-optimal Solutionを得るためのFF-CRアルゴリズムの反復複雑性は、$\mathcal{O}(\frac{\rho\|z^0-z^*\|^2}{\epsilon})^{\frac{2}{3}}$で上界であることが証明される。
数値実験は、両方のアルゴリズムの効率を示す。
我々の知る限り、FF-CRアルゴリズムは、凸凹極小最適化問題を解くための最初の完全にパラメータフリーな2次アルゴリズムであり、その反復複雑性は、凸凹極小最適化問題を解くためのパラメータを持つ既存の2次アルゴリズムの下限の最適反復複雑性と一致している。
関連論文リスト
- Gradient Norm Regularization Second-Order Algorithms for Solving Nonconvex-Strongly Concave Minimax Problems [2.3721580767877257]
提案手法は,非強弱畳み込みミニマックス問題の解法である。
本稿では,提案アルゴリズムが$mathcalを達成することを示す。
スティロン
2階ノルムは上向きであることが証明されている。
tk
400ドルだ
400ドルだ
400ドルだ
400ドルだ
400ドルだ
400ドルだ
400ドルだ
400ドルだ
400ドルだ
400ドルだ
$k
論文 参考訳(メタデータ) (2024-11-24T09:46:36Z) - On Linear Convergence in Smooth Convex-Concave Bilinearly-Coupled Saddle-Point Optimization: Lower Bounds and Optimal Algorithms [17.227158587717934]
滑らかな凸凹型双線型結合型サドル点問題である $min_xmax_y f(x) + langle y,mathbfB xrangle - g(y)$ を再検討する。
この問題クラスに対して、第一低次複雑性境界と最適線形収束アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-11-21T22:06:25Z) - Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
複素勾配問題に対する2つの分散化ZO推定器を提案する。
我々は、現在最先端の機能複雑性を$mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$から$tildecalOleft(fracdepsilon2right)$に改善する。
論文 参考訳(メタデータ) (2024-10-03T15:04:01Z) - An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
リプシッツの目的の滑らかな点も凸点も生成しない点の複雑さについて検討する。
私たちの分析は単純だが強力だ。
Goldstein-subdifferential set, これは最近の進歩を可能にする。
非滑らかな非最適化
論文 参考訳(メタデータ) (2023-07-10T11:56:04Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
次元自由な次元自由アルゴリズムを得るにはランダム化が必要であることを示す。
我々のアルゴリズムは、ReLUネットワークを最適化する最初の決定論的次元自由アルゴリズムを得る。
論文 参考訳(メタデータ) (2023-02-16T13:57:19Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
本稿では,BFG凸最適化(SCO: Reweighted Query (ReSQue) 推定ツールを提案する。
我々はSCOの並列およびプライベート設定における最先端の複雑さを実現するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-01-01T18:51:29Z) - The First Optimal Algorithm for Smooth and
Strongly-Convex-Strongly-Concave Minimax Optimization [88.91190483500932]
本稿では,スムーズで強靭なミニマックス最適化問題を再考する。
既存の最先端メソッドは、下限の$Omegaleft(sqrtkappa_xkappa_ylog3 (kappa_xkappa_y)logfrac1epsilonright)$にマッチしない。
我々は、$mathcalOleft( sqrtkappa_xkappa_ylog)で最初のアルゴリズムを提供することで、この根本的な問題を解決する。
論文 参考訳(メタデータ) (2022-05-11T17:33:07Z) - Derivative-free Alternating Projection Algorithms for General
Nonconvex-Concave Minimax Problems [9.173866646584031]
本稿では,非滑らかなゼロ次ミニマックス問題に対するアルゴリズムを提案する。
また,非コンケーブミニマックス問題に対処できることを示す。
論文 参考訳(メタデータ) (2021-08-01T15:23:49Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z) - Second-order Conditional Gradient Sliding [79.66739383117232]
本稿では,emphSecond-Order Conditional Gradient Sliding (SOCGS)アルゴリズムを提案する。
SOCGSアルゴリズムは、有限個の線形収束反復の後、原始ギャップに二次的に収束する。
実現可能な領域が線形最適化オラクルを通してのみ効率的にアクセスできる場合に有用である。
論文 参考訳(メタデータ) (2020-02-20T17:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。