論文の概要: An Empirical Study on Capability of Large Language Models in Understanding Code Semantics
- arxiv url: http://arxiv.org/abs/2407.03611v1
- Date: Thu, 4 Jul 2024 03:40:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 19:21:33.455273
- Title: An Empirical Study on Capability of Large Language Models in Understanding Code Semantics
- Title(参考訳): コードセマンティックス理解における大規模言語モデルの能力に関する実証的研究
- Authors: Thu-Trang Nguyen, Thanh Trong Vu, Hieu Dinh Vo, Son Nguyen,
- Abstract要約: コードのための大規模言語モデル(コードLLM)は、様々なソフトウェア工学(SE)タスクで顕著なパフォーマンスを示している。
本稿では,コード意味論の理解におけるLLMの能力を評価するためのフレームワークであるEMPICAを紹介する。
- 参考スコア(独自算出の注目度): 4.638578225024275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models for Code (code LLMs) have demonstrated remarkable performance across various software engineering (SE) tasks, increasing the application of code LLMs in software development. Despite the success of code LLMs, there remain significant concerns about the actual capabilities and reliability of these models, "whether these models really learn the semantics of code from the training data and leverage the learned knowledge to perform the SE tasks". In this paper, we introduce EMPICA, a comprehensive framework designed to systematically and empirically evaluate the capabilities of code LLMs in understanding code semantics. Specifically, EMPICA systematically introduces controlled modifications/transformations into the input code and examines the models' responses. Generally, code LLMs must be robust to semantically equivalent code inputs and be sensitive to non-equivalent ones for all SE tasks. Specifically, for every SE task, given an input code snippet c and its semantic equivalent variants, code LLMs must robustly produce consistent/equivalent outputs while they are expected to generate different outputs for c and its semantic non-equivalent variants. Our experimental results on three representative code understanding tasks, including code summarization, method name prediction, and output prediction, reveal that the robustness and sensitivity of the state-of-the-art code LLMs to code transformations vary significantly across tasks and transformation operators. In addition, the code LLMs exhibit better robustness to the semantic preserving transformations than their sensitivity to the semantic non-preserving transformations. These results highlight a need to enhance the model's capabilities of understanding code semantics, especially the sensitivity property.
- Abstract(参考訳): コードのための大規模言語モデル(コードLLM)は、様々なソフトウェアエンジニアリング(SE)タスクにまたがって顕著な性能を示し、ソフトウェア開発におけるコードLLMの適用を増加させている。
コードLLMの成功にもかかわらず、これらのモデルの実際の能力と信頼性について、"これらのモデルが実際にトレーニングデータからコードのセマンティクスを学び、SEタスクを実行するために学習した知識を活用するかどうか"という重要な懸念が残っている。
本稿では,コード意味論の理解において,コードLLMの能力を体系的かつ実証的に評価するために設計された包括的フレームワークであるEMPICAを紹介する。
具体的には、EMPICAは、制御された修正/変換を入力コードに体系的に導入し、モデルの応答を調べる。
一般的に、LLMは意味論的に等価なコード入力に対して堅牢でなければならない。
特に、すべてのSEタスクにおいて、入力コードスニペットcとその意味的等価変種が与えられた場合、LLMは、cとその意味的非等価変種に対して異なる出力を生成すると期待されている間に、一貫性/等価な出力を強固に生成しなければならない。
コード要約、メソッド名予測、出力予測を含む3つの代表的なコード理解タスクに関する実験結果から、現状のコードLLMのコード変換に対する堅牢性と感度がタスクや変換演算子によって大きく異なることが明らかとなった。
加えて、LLMは意味保存変換に対する感度よりも意味保存変換に対する堅牢性が高い。
これらの結果は、コードセマンティクス、特に感度特性を理解するモデルの能力を強化する必要性を浮き彫りにしている。
関連論文リスト
- CodeSAM: Source Code Representation Learning by Infusing Self-Attention with Multi-Code-View Graphs [8.850533100643547]
我々は,複数のコードビューをトランスフォーマーベースモデルに注入する新しいフレームワークであるCodeSAMを提案する。
CodeSAMを使って、セマンティックコード検索、コードクローン検出、プログラム分類の下流SEタスクでCodeBERTのような小さな言語モデル(SLM)を微調整します。
論文 参考訳(メタデータ) (2024-11-21T22:24:47Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - Case2Code: Learning Inductive Reasoning with Synthetic Data [105.89741089673575]
プログラムの表現性と正確性を利用したtextbfCase2Code タスクを提案する。
まず、合成したCase2Codeタスクにおける代表LLMを評価し、LLMにおいてケース・ツー・コード誘導が困難であることを実証する。
実験結果から,このような帰納的学習は,Case2Codeの性能だけでなく,学習用LLMの各種符号化能力の向上にも寄与することがわかった。
論文 参考訳(メタデータ) (2024-07-17T11:35:00Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
本稿では、マルチソースデータに微調整されたコード生成と一般化機能を備えたコードLLMのシリーズであるAlchemistCoderを紹介する。
本稿では,データ構築過程を微調整データに組み込んで,命令の進化,データフィルタリング,コードレビューなどのコード理解タスクを提案する。
論文 参考訳(メタデータ) (2024-05-29T16:57:33Z) - Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs [65.2379940117181]
自然言語の問題をコードに変換する一連のプロンプトであるコードプロンプトを導入します。
コードプロンプトは複数のLLMに対して高速に向上することがわかった。
GPT 3.5を解析した結果,入力問題のコードフォーマッティングが性能向上に不可欠であることが判明した。
論文 参考訳(メタデータ) (2024-01-18T15:32:24Z) - Mutation-based Consistency Testing for Evaluating the Code Understanding
Capability of LLMs [5.549095839198671]
大きな言語モデル(LLM)は、自然言語とプログラミング言語の両方を処理する際、顕著な能力を示している。
本稿では,LLMのコード理解性能を評価する新しい手法を提案し,特にコードと記述の微妙な差異に着目した。
演算子置換やステートメント削除など,さまざまなタイプのコード突然変異を適用して,一貫性のないコード記述ペアを生成する。
我々は,現在最先端のコード生成ベンチマークであるHumanEval-Xを用いて,GPT-3.5とGPT-4の2つのLLMのケーススタディを行う。
論文 参考訳(メタデータ) (2024-01-11T14:27:43Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
本稿では,SeCoT というコードの意味情報を抽出する "Semantic Chain-of-Thought" 手法を提案する。
本研究では,SeCoTが最先端の性能を実現し,大規模モデルやコード生成の可能性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-10-16T05:09:58Z) - LMs: Understanding Code Syntax and Semantics for Code Analysis [25.508254718438636]
我々は,大規模言語モデル(LLM)の機能と,ソフトウェア工学におけるコード解析の限界を評価する。
GPT4, GPT3.5, StarCoder, CodeLlama-13b-インストラクトという,最先端の4つの基礎モデルを採用している。
論文 参考訳(メタデータ) (2023-05-20T08:43:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。