論文の概要: On the performance of sequential Bayesian update for database of diverse tsunami scenarios
- arxiv url: http://arxiv.org/abs/2407.03631v1
- Date: Thu, 4 Jul 2024 04:46:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 19:11:48.493905
- Title: On the performance of sequential Bayesian update for database of diverse tsunami scenarios
- Title(参考訳): 各種津波シナリオデータベースにおける連続ベイズ更新の性能について
- Authors: Reika Nomura, Louise A. Hirao Vermare, Saneiki Fujita, Donsub Rim, Shuji Moriguchi, Randall J. LeVeque, Kenjiro Terada,
- Abstract要約: 本研究の目的は,多様なデータベースを用いた津波シナリオ検出フレームワークの性能評価である。
シナリオ重畳の有効性を,従来最も可能性の高いシナリオ検出手法と比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although the sequential tsunami scenario detection framework was validated in our previous work, several tasks remain to be resolved from a practical point of view. This study aims to evaluate the performance of the previous tsunami scenario detection framework using a diverse database consisting of complex fault rupture patterns with heterogeneous slip distributions. Specifically, we compare the effectiveness of scenario superposition to that of the previous most likely scenario detection method. Additionally, how the length of the observation time window influences the accuracy of both methods is analyzed. We utilize an existing database comprising 1771 tsunami scenarios targeting the city Westport (WA, U.S.), which includes synthetic wave height records and inundation distributions as the result of fault rupture in the Cascadia subduction zone. The heterogeneous patterns of slips used in the database increase the diversity of the scenarios and thus make it a proper database for evaluating the performance of scenario superposition. To assess the performance, we consider various observation time windows shorter than 15 minutes and divide the database into five testing and learning sets. The evaluation accuracy of the maximum offshore wave, inundation depth, and its distribution is analyzed to examine the advantages of the scenario superposition method over the previous method. We introduce the dynamic time warping (DTW) method as an additional benchmark and compare its results to that of the Bayesian scenario detection method.
- Abstract(参考訳): 本研究では, 津波シナリオ検出フレームワークの検証を行ったが, 現実的な観点からはいくつかの課題が解決される。
本研究では, 複雑な断層破断パターンと不均一なすべり分布からなる多種多様なデータベースを用いて, 過去の津波シナリオ検出フレームワークの性能を評価することを目的とする。
具体的には,シナリオ重畳の有効性を,従来最も可能性の高いシナリオ検出手法と比較する。
さらに,観測時間窓の長さが両手法の精度に与える影響を解析した。
我々は,カスカディア沈み込み帯の断層崩壊の結果,合成波高記録と浸水分布を含む1771年の津波シナリオを対象とする既存のデータベースを利用する。
データベースで使われるスリップの不均一パターンはシナリオの多様性を高め、シナリオの重ね合わせのパフォーマンスを評価するのに適切なデータベースとなる。
性能を評価するため、15分未満の観測時間ウィンドウを考慮し、データベースを5つのテストと学習セットに分割する。
最大沖合波, 浸水深度, 分布の評価精度を解析し, シナリオ重ね合わせ法の利点について検討した。
動的時間ゆらぎ (DTW) 法を追加ベンチマークとして導入し, ベイズシナリオ検出法との比較を行った。
関連論文リスト
- In-Context Parametric Inference: Point or Distribution Estimators? [66.22308335324239]
償却点推定器は一般に後部推論より優れているが、後者は低次元問題では競争力がある。
実験の結果, 償却点推定器は一般に後部推定より優れているが, 後者は低次元問題では競争力があることがわかった。
論文 参考訳(メタデータ) (2025-02-17T10:00:24Z) - DBsurf: A Discrepancy Based Method for Discrete Stochastic Gradient
Estimation [2.89784213091656]
離散分布の強化型推定器DBsurfを紹介する。
サンプルと実際の分布との差を低減するために、新しいサンプリング手順を使用する。
DBsurfは、ベンチマークの文献で一般的に使用される最小二乗問題において、最も低い分散が得られる。
論文 参考訳(メタデータ) (2023-09-07T19:15:40Z) - Sequential Attention Source Identification Based on Feature
Representation [88.05527934953311]
本稿では,テンポラルシーケンスに基づくグラフ注意源同定(TGASI)と呼ばれるシーケンス・ツー・シーケンス・ベースのローカライズ・フレームワークを提案する。
なお、このインダクティブラーニングのアイデアは、TGASIが他の事前の知識を知らずに新しいシナリオのソースを検出できることを保証する。
論文 参考訳(メタデータ) (2023-06-28T03:00:28Z) - Fast post-process Bayesian inference with Variational Sparse Bayesian Quadrature [13.36200518068162]
本稿では,既存の目標密度評価から高速な後続近似を得る手段として,プロセス後ベイズ推定の枠組みを提案する。
この枠組みでは,ブラックボックスと潜在的ノイズの可能性のあるモデルに対して,プロセス後近似推定法である変分スパースベイズ近似(VSBQ)を導入する。
本手法は,計算神経科学による難解な合成シナリオと実世界の応用について検証する。
論文 参考訳(メタデータ) (2023-03-09T13:58:35Z) - DELTA: degradation-free fully test-time adaptation [59.74287982885375]
テスト時間バッチ正規化(BN)や自己学習といった,一般的な適応手法では,2つの好ましくない欠陥が隠されていることがわかった。
まず、テスト時間BNにおける正規化統計は、現在受信されているテストサンプルに完全に影響され、その結果、不正確な推定結果が得られることを明らかにする。
第二に、テスト時間適応中にパラメータ更新が支配的なクラスに偏っていることを示す。
論文 参考訳(メタデータ) (2023-01-30T15:54:00Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Semi-Supervised Temporal Action Detection with Proposal-Free Masking [134.26292288193298]
PropOsal-free Temporal mask (SPOT) に基づく新しい半教師付き時間行動検出モデルを提案する。
SPOTは最先端の代替品よりも優れている。
論文 参考訳(メタデータ) (2022-07-14T16:58:47Z) - Context-Aware Drift Detection [0.0]
均質性の2サンプル試験は、既存のドリフト検出手法が構築される基礎となる。
条件分布処理効果の2サンプル試験の基礎の上に構築した,より一般的なドリフト検出フレームワークを開発した。
論文 参考訳(メタデータ) (2022-03-16T14:23:02Z) - Interpretable Feature Construction for Time Series Extrinsic Regression [0.028675177318965035]
一部のアプリケーション領域では、対象変数が数値であり、その問題は時系列外部回帰(TSER)として知られている。
TSERの文脈における頑健で解釈可能な特徴構築と選択のためのベイズ法の拡張を提案する。
私たちのアプローチは、TSERに取り組むためのリレーショナルな方法を利用します:(i)、リレーショナルデータスキームに格納されている時系列の多様で単純な表現を構築し、(ii)二次テーブルからデータを「フラット化」するために解釈可能な機能を構築するためにプロポジション化技術を適用します。
論文 参考訳(メタデータ) (2021-03-15T08:12:19Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。