MRIR: Integrating Multimodal Insights for Diffusion-based Realistic Image Restoration
- URL: http://arxiv.org/abs/2407.03635v1
- Date: Thu, 4 Jul 2024 04:55:14 GMT
- Title: MRIR: Integrating Multimodal Insights for Diffusion-based Realistic Image Restoration
- Authors: Yuhong Zhang, Hengsheng Zhang, Xinning Chai, Rong Xie, Li Song, Wenjun Zhang,
- Abstract summary: We propose MRIR, a diffusion-based restoration method with multimodal insights.
For the textual level, we harness the power of the pre-trained multimodal large language model to infer meaningful semantic information from low-quality images.
For the visual level, we mainly focus on the pixel level control. Thus, we utilize a Pixel-level Processor and ControlNet to control spatial structures.
- Score: 17.47612023350466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Realistic image restoration is a crucial task in computer vision, and the use of diffusion-based models for image restoration has garnered significant attention due to their ability to produce realistic results. However, the quality of the generated images is still a significant challenge due to the severity of image degradation and the uncontrollability of the diffusion model. In this work, we delve into the potential of utilizing pre-trained stable diffusion for image restoration and propose MRIR, a diffusion-based restoration method with multimodal insights. Specifically, we explore the problem from two perspectives: textual level and visual level. For the textual level, we harness the power of the pre-trained multimodal large language model to infer meaningful semantic information from low-quality images. Furthermore, we employ the CLIP image encoder with a designed Refine Layer to capture image details as a supplement. For the visual level, we mainly focus on the pixel level control. Thus, we utilize a Pixel-level Processor and ControlNet to control spatial structures. Finally, we integrate the aforementioned control information into the denoising U-Net using multi-level attention mechanisms and realize controllable image restoration with multimodal insights. The qualitative and quantitative results demonstrate our method's superiority over other state-of-the-art methods on both synthetic and real-world datasets.
Related papers
- MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.
Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss.
We show that MMAR demonstrates much more superior performance than other joint multi-modal models.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - Multi-Scale Representation Learning for Image Restoration with State-Space Model [13.622411683295686]
We propose a novel Multi-Scale State-Space Model-based (MS-Mamba) for efficient image restoration.
Our proposed method achieves new state-of-the-art performance while maintaining low computational complexity.
arXiv Detail & Related papers (2024-08-19T16:42:58Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
Diffusion models (DMs) have revolutionized image generation, producing high-quality images with applications spanning various fields.
Their ability to create hyper-realistic images poses significant challenges in distinguishing between real and synthetic content.
This work introduces a robust detection framework that integrates image and text features extracted by CLIP model with a Multilayer Perceptron (MLP) classifier.
arXiv Detail & Related papers (2024-04-19T14:30:41Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.
We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.
Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.