論文の概要: SQuARE: Sequential Question Answering Reasoning Engine for Enhanced Chain-of-Thought in Large Language Models
- arxiv url: http://arxiv.org/abs/2502.09390v1
- Date: Thu, 13 Feb 2025 15:07:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:50:54.730935
- Title: SQuARE: Sequential Question Answering Reasoning Engine for Enhanced Chain-of-Thought in Large Language Models
- Title(参考訳): SQuARE:大規模言語モデルにおける階層化のための逐次質問応答推論エンジン
- Authors: Daniel Fleischer, Moshe Berchansky, Gad Markovits, Moshe Wasserblat,
- Abstract要約: 本稿では、自己干渉パラダイムによる推論を改善するために設計された新しいプロンプト技術であるSQuAREを紹介する。
CoTフレームワーク上に構築されているSQuAREでは,メインクエリに対処する前に,複数の補助的な質問の生成と解決をモデルに促している。
Llama 3 と GPT-4o モデルを用いて複数の質問応答データセットを用いて評価を行った結果,SQuARE が従来の CoT プロンプトや既存のrephrase-and- corresponding 手法をはるかに上回っていることが示された。
- 参考スコア(独自算出の注目度): 4.328173053224842
- License:
- Abstract: In the rapidly evolving field of Natural Language Processing, Large Language Models (LLMs) are tasked with increasingly complex reasoning challenges. Traditional methods like chain-of-thought prompting have shown promise but often fall short in fully leveraging a model's reasoning capabilities. This paper introduces SQuARE (Sequential Question Answering Reasoning Engine), a novel prompting technique designed to improve reasoning through a self-interrogation paradigm. Building upon CoT frameworks, SQuARE prompts models to generate and resolve multiple auxiliary questions before tackling the main query, promoting a more thorough exploration of various aspects of a topic. Our expansive evaluations, conducted with Llama 3 and GPT-4o models across multiple question-answering datasets, demonstrate that SQuARE significantly surpasses traditional CoT prompts and existing rephrase-and-respond methods. By systematically decomposing queries, SQuARE advances LLM capabilities in reasoning tasks. The code is publicly available at https://github.com/IntelLabs/RAG-FiT/tree/square.
- Abstract(参考訳): 自然言語処理の分野では、Large Language Models (LLM) はますます複雑な推論課題に対処している。
チェーン・オブ・ソート・プロンプトのような従来の手法は、将来性を示してきたが、しばしばモデルの推論能力を完全に活用するのに不足している。
本稿では,SQuARE(Sequential Question Answering Reasoning Engine)を紹介する。
CoTフレームワークを基盤として、SQuAREはメインクエリに取り組む前に複数の補助的な質問を生成し、解決するようモデルに促し、トピックのさまざまな側面をより徹底的に調査することを推奨する。
Llama 3 と GPT-4o モデルを複数問合せデータセットで比較した結果,SQuARE が従来の CoT プロンプトや既存のrephrase-and- corresponding 手法をはるかに上回っていることが示された。
クエリを体系的に分解することで、SQuAREは推論タスクにおいてLLM機能を前進させる。
コードはhttps://github.com/IntelLabs/RAG-FiT/tree/squareで公開されている。
関連論文リスト
- STOC-TOT: Stochastic Tree-of-Thought with Constrained Decoding for Complex Reasoning in Multi-Hop Question Answering [8.525847131940031]
マルチホップ質問応答(MHQA)は、複雑な質問に答えるために複数の通路から情報を検索し統合するモデルを必要とする。
近年のシステムでは、大規模言語モデルのパワーを活用し、証拠検索と推論のプロンプトを統合している。
MHQAの制約付き復号法であるSTOC-TOTを提案する。
論文 参考訳(メタデータ) (2024-07-04T07:17:53Z) - Self-Improvement Programming for Temporal Knowledge Graph Question Answering [31.33908040172437]
時間的知識グラフ質問回答(TKGQA)は、時間的知識グラフ(TKG)に対する時間的意図で質問に答えることを目的としている。
既存のエンドツーエンドの手法は、質問や候補者の回答の埋め込みを学習することで、時間制約を暗黙的にモデル化する。
TKGQA(Prog-TQA)のための新しい自己改善プログラミング手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T08:14:27Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
CoT(Chain-of-Thought)のプロンプトにより,大規模言語モデル(LLM)の推論能力が向上する
既存のCoTアプローチは通常、単純な推論タスクに重点を置いており、結果として低品質で一貫性のないCoTプロンプトをもたらす。
優れたCoTプロンプトの自動生成のための新しいフレームワークであるCoTGeniusを紹介する。
論文 参考訳(メタデータ) (2024-03-21T11:34:26Z) - Prompting Large Language Models with Chain-of-Thought for Few-Shot
Knowledge Base Question Generation [19.327008532572645]
知識ベースに関する質問生成(KBQG)は、論理形式を自然言語の質問に変換することを目的としている。
推論のためのコンテキスト内学習戦略であるChain-of-Thoughtプロンプトを提案する。
3つのKBQGデータセットに対して広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-12T15:08:14Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - STREET: A Multi-Task Structured Reasoning and Explanation Benchmark [56.555662318619135]
マルチタスクとマルチドメインの自然言語推論と説明ベンチマークを統一的に導入する。
我々は、モデルが質問に答えるだけでなく、ある解の正しさを証明できる中間的な結論を生成するために、問題の前提がどのように使われているかを記述する、段階的に構造化された説明を生成することを期待している。
論文 参考訳(メタデータ) (2023-02-13T22:34:02Z) - Successive Prompting for Decomposing Complex Questions [50.00659445976735]
最近の研究は、大規模言語モデル(LM)の機能を活用して、数ショットで複雑な質問応答を行う。
そこでは、複雑なタスクを単純なタスクに繰り返し分解し、それを解決し、最終解を得るまでプロセスを繰り返します。
我々の最良のモデル(逐次プロンプト付き)は、DROPデータセットの数ショットバージョンにおいて、5%の絶対F1の改善を実現します。
論文 参考訳(メタデータ) (2022-12-08T06:03:38Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
大規模言語モデルに対して,多段階推論を行うための課題について検討する。
中心的な疑問は、どの推論例が最も効果的なプロンプトを作るかである。
多段階推論のためのシンプルで効果的な例選択方式である複雑性ベースのプロンプトを提案する。
論文 参考訳(メタデータ) (2022-10-03T05:33:27Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
本稿では,既存のモデルで解けるより単純なモデルに分解することで,複雑なタスクを解くための解釈可能なシステムを構築するためのフレームワークを提案する。
我々はこのフレームワークを用いて、ニューラルネットワークのファクトイド単一スパンQAモデルとシンボリック電卓で答えられるサブクエストに分解することで、マルチホップ推論問題に答えられるシステムであるModularQAを構築する。
論文 参考訳(メタデータ) (2020-09-01T23:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。