論文の概要: HYBRINFOX at CheckThat! 2024 -- Task 1: Enhancing Language Models with Structured Information for Check-Worthiness Estimation
- arxiv url: http://arxiv.org/abs/2407.03850v1
- Date: Thu, 4 Jul 2024 11:33:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:22:43.809215
- Title: HYBRINFOX at CheckThat! 2024 -- Task 1: Enhancing Language Models with Structured Information for Check-Worthiness Estimation
- Title(参考訳): HYBRINFOX at CheckThat! 2024 - Task 1: Enhancing Language Models with Structured Information for Check-Worthiness Estimation (英語)
- Authors: Géraud Faye, Morgane Casanova, Benjamin Icard, Julien Chanson, Guillaume Gadek, Guillaume Gravier, Paul Égré,
- Abstract要約: 本稿では,2024年 - タスク1コンペティションのためのHYBRINFOXチームの実験と結果について要約する。
本稿では,RoBERTaのような言語モデルに三重項による埋め込みを組み込む手法を提案する。
- 参考スコア(独自算出の注目度): 0.8083061106940517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper summarizes the experiments and results of the HYBRINFOX team for the CheckThat! 2024 - Task 1 competition. We propose an approach enriching Language Models such as RoBERTa with embeddings produced by triples (subject ; predicate ; object) extracted from the text sentences. Our analysis of the developmental data shows that this method improves the performance of Language Models alone. On the evaluation data, its best performance was in English, where it achieved an F1 score of 71.1 and ranked 12th out of 27 candidates. On the other languages (Dutch and Arabic), it obtained more mixed results. Future research tracks are identified toward adapting this processing pipeline to more recent Large Language Models.
- Abstract(参考訳): 本報告では,CheckThatのHYBRINFOXチームによる実験結果について要約する。
2024年 - 第1回大会開催。
本稿では,RoBERTaのような言語モデルに,テキストから抽出した三重項(目的語,述語,対象語)の埋め込みを組み込むアプローチを提案する。
本手法は言語モデルのみの性能向上を図っている。
評価データによると、最高成績は英語であり、F1得点は71.1点、27候補中12位だった。
他の言語(オランダ語とアラビア語)では、より複雑な結果が得られる。
今後の研究トラックは、この処理パイプラインを、より最近のLarge Language Modelsに適応するために特定される。
関連論文リスト
- Navigating Text-to-Image Generative Bias across Indic Languages [53.92640848303192]
本研究ではインドで広く話されているIndic言語に対するテキスト・ツー・イメージ(TTI)モデルのバイアスについて検討する。
これらの言語における主要なTTIモデルの生成的パフォーマンスと文化的関連性を評価し,比較する。
論文 参考訳(メタデータ) (2024-08-01T04:56:13Z) - HYBRINFOX at CheckThat! 2024 -- Task 2: Enriching BERT Models with the Expert System VAGO for Subjectivity Detection [0.8083061106940517]
HYBRINFOX法は評価データからマクロF1スコア0.7442で1位にランク付けした。
本稿では,我々のハイブリッドアプローチの原理を説明し,その手法を英語以外の言語にも適用する方法を概説する。
論文 参考訳(メタデータ) (2024-07-04T09:29:19Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - An Open Dataset and Model for Language Identification [84.15194457400253]
マクロ平均F1スコア0.93、偽陽性率0.033を201言語で達成するLIDモデルを提案する。
モデルとデータセットの両方を研究コミュニティに公開しています。
論文 参考訳(メタデータ) (2023-05-23T08:43:42Z) - DN at SemEval-2023 Task 12: Low-Resource Language Text Classification
via Multilingual Pretrained Language Model Fine-tuning [0.0]
感情分析のための既存のモデルやデータセットは、英語や中国語などの高リソース言語向けに開発されている。
AfriSenti-SemEval 2023 Shared Task 12は、低リソースのアフリカの言語に対する感情分析モデルを評価することで、このギャップを埋めることを目的としている。
そこで我々は,多言語XLM-Rモデルを多言語モデルに適用し,様々なデータに基づいて分類ヘッドを訓練した。
論文 参考訳(メタデータ) (2023-05-04T07:28:45Z) - Enhancing Model Performance in Multilingual Information Retrieval with
Comprehensive Data Engineering Techniques [10.57012904999091]
我々は、MIRACLデータセットを用いて、事前訓練された多言語トランスフォーマーベースモデルを微調整する。
モデルの改善は主に、多様なデータエンジニアリング技術によって達成されます。
我々はSurprise-Languagesトラックで2位、Known-Languagesトラックで0.835位、3位、NDCG@10スコアで16の既知の言語で平均0.716位を確保した。
論文 参考訳(メタデータ) (2023-02-14T12:37:32Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - Improving Persian Relation Extraction Models by Data Augmentation [0.0]
本システムの結果と結果について述べる。
PERLEXをベースデータセットとして使用し、テキスト前処理のステップを適用して拡張する。
次に、拡張PERLEXデータセット上の関係抽出にParsBERTとmultilingual BERTの2つの異なるモデルを用いる。
論文 参考訳(メタデータ) (2022-03-29T08:08:47Z) - AmericasNLI: Evaluating Zero-shot Natural Language Understanding of
Pretrained Multilingual Models in Truly Low-resource Languages [75.08199398141744]
我々は、XNLI(Conneau et al)の拡張である AmericasNLI を提示する。
は、アメリカ大陸の10の原住民の言語である。
XLM-Rで実験を行い、複数のゼロショットおよび翻訳ベースのアプローチをテストします。
XLM-Rのゼロショット性能は全10言語で低調であり、平均性能は38.62%である。
論文 参考訳(メタデータ) (2021-04-18T05:32:28Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。