DeblurGS: Gaussian Splatting for Camera Motion Blur
- URL: http://arxiv.org/abs/2404.11358v2
- Date: Thu, 18 Apr 2024 03:18:36 GMT
- Title: DeblurGS: Gaussian Splatting for Camera Motion Blur
- Authors: Jeongtaek Oh, Jaeyoung Chung, Dongwoo Lee, Kyoung Mu Lee,
- Abstract summary: We propose DeblurGS, a method to optimize sharp 3D Gaussian Splatting from motion-blurred images.
We restore a fine-grained sharp scene by leveraging the remarkable reconstruction capability of 3D Gaussian Splatting.
Our approach estimates the 6-Degree-of-Freedom camera motion for each blurry observation and synthesizes corresponding blurry renderings.
- Score: 45.13521168573883
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although significant progress has been made in reconstructing sharp 3D scenes from motion-blurred images, a transition to real-world applications remains challenging. The primary obstacle stems from the severe blur which leads to inaccuracies in the acquisition of initial camera poses through Structure-from-Motion, a critical aspect often overlooked by previous approaches. To address this challenge, we propose DeblurGS, a method to optimize sharp 3D Gaussian Splatting from motion-blurred images, even with the noisy camera pose initialization. We restore a fine-grained sharp scene by leveraging the remarkable reconstruction capability of 3D Gaussian Splatting. Our approach estimates the 6-Degree-of-Freedom camera motion for each blurry observation and synthesizes corresponding blurry renderings for the optimization process. Furthermore, we propose Gaussian Densification Annealing strategy to prevent the generation of inaccurate Gaussians at erroneous locations during the early training stages when camera motion is still imprecise. Comprehensive experiments demonstrate that our DeblurGS achieves state-of-the-art performance in deblurring and novel view synthesis for real-world and synthetic benchmark datasets, as well as field-captured blurry smartphone videos.
Related papers
- Dyn-HaMR: Recovering 4D Interacting Hand Motion from a Dynamic Camera [49.82535393220003]
Dyn-HaMR is the first approach to reconstruct 4D global hand motion from monocular videos recorded by dynamic cameras in the wild.
We show that our approach significantly outperforms state-of-the-art methods in terms of 4D global mesh recovery.
This establishes a new benchmark for hand motion reconstruction from monocular video with moving cameras.
arXiv Detail & Related papers (2024-12-17T12:43:10Z) - LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors [107.83398512719981]
Single-image 3D reconstruction remains a fundamental challenge in computer vision.
Recent advances in Latent Video Diffusion Models offer promising 3D priors learned from large-scale video data.
We propose LiftImage3D, a framework that effectively releases LVDMs' generative priors while ensuring 3D consistency.
arXiv Detail & Related papers (2024-12-12T18:58:42Z) - FreeSplatter: Pose-free Gaussian Splatting for Sparse-view 3D Reconstruction [59.77970844874235]
We present FreeSplatter, a feed-forward reconstruction framework capable of generating high-quality 3D Gaussians from sparse-view images.
FreeSplatter is built upon a streamlined transformer architecture, comprising sequential self-attention blocks.
We show FreeSplatter's potential in enhancing the productivity of downstream applications, such as text/image-to-3D content creation.
arXiv Detail & Related papers (2024-12-12T18:52:53Z) - Deblur4DGS: 4D Gaussian Splatting from Blurry Monocular Video [64.38566659338751]
We propose the first 4D Gaussian Splatting framework to reconstruct a high-quality 4D model from blurry monocular video, named Deblur4DGS.
We introduce exposure regularization to avoid trivial solutions, as well as multi-frame and multi-resolution consistency ones to alleviate artifacts. Beyond novel-view, Deblur4DGS can be applied to improve blurry video from multiple perspectives, including deblurring, frame synthesis, and video stabilization.
arXiv Detail & Related papers (2024-12-09T12:02:11Z) - MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
We propose a novel deformable 3D Gaussian splatting framework called MotionGS.
MotionGS explores explicit motion priors to guide the deformation of 3D Gaussians.
Experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T08:19:47Z) - LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors [34.91966359570867]
sparse-view reconstruction is inherently ill-posed and under-constrained.
We introduce LM-Gaussian, a method capable of generating high-quality reconstructions from a limited number of images.
Our approach significantly reduces the data acquisition requirements compared to previous 3DGS methods.
arXiv Detail & Related papers (2024-09-05T12:09:02Z) - EaDeblur-GS: Event assisted 3D Deblur Reconstruction with Gaussian Splatting [8.842593320829785]
Event-assisted 3D Deblur Reconstruction with Gaussian Splatting (EaDeblur-GS) is presented.
It integrates event camera data to enhance the robustness of 3DGS against motion blur.
It achieves sharp 3D reconstructions in real-time, demonstrating performance comparable to state-of-the-art methods.
arXiv Detail & Related papers (2024-07-18T13:55:54Z) - CRiM-GS: Continuous Rigid Motion-Aware Gaussian Splatting from Motion-Blurred Images [14.738528284246545]
CRiM-GS is a textbfContinuous textbfRigid textbfMotion-aware textbfGaussian textbfSplatting.
It reconstructs precise 3D scenes from motion-blurred images while maintaining real-time rendering speed.
arXiv Detail & Related papers (2024-07-04T13:37:04Z) - EvaGaussians: Event Stream Assisted Gaussian Splatting from Blurry Images [36.91327728871551]
3D Gaussian Splatting (3D-GS) has demonstrated exceptional capabilities in 3D scene reconstruction and novel view synthesis.
We introduce Event Stream Assisted Gaussian Splatting (EvaGaussians), a novel approach that integrates event streams captured by an event camera to assist in reconstructing high-quality 3D-GS from blurry images.
arXiv Detail & Related papers (2024-05-29T04:59:27Z) - Gaussian Splatting on the Move: Blur and Rolling Shutter Compensation for Natural Camera Motion [25.54868552979793]
We present a method that adapts to camera motion and allows high-quality scene reconstruction with handheld video data.
Our results with both synthetic and real data demonstrate superior performance in mitigating camera motion over existing methods.
arXiv Detail & Related papers (2024-03-20T06:19:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.