DeblurGS: Gaussian Splatting for Camera Motion Blur
- URL: http://arxiv.org/abs/2404.11358v2
- Date: Thu, 18 Apr 2024 03:18:36 GMT
- Title: DeblurGS: Gaussian Splatting for Camera Motion Blur
- Authors: Jeongtaek Oh, Jaeyoung Chung, Dongwoo Lee, Kyoung Mu Lee,
- Abstract summary: We propose DeblurGS, a method to optimize sharp 3D Gaussian Splatting from motion-blurred images.
We restore a fine-grained sharp scene by leveraging the remarkable reconstruction capability of 3D Gaussian Splatting.
Our approach estimates the 6-Degree-of-Freedom camera motion for each blurry observation and synthesizes corresponding blurry renderings.
- Score: 45.13521168573883
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although significant progress has been made in reconstructing sharp 3D scenes from motion-blurred images, a transition to real-world applications remains challenging. The primary obstacle stems from the severe blur which leads to inaccuracies in the acquisition of initial camera poses through Structure-from-Motion, a critical aspect often overlooked by previous approaches. To address this challenge, we propose DeblurGS, a method to optimize sharp 3D Gaussian Splatting from motion-blurred images, even with the noisy camera pose initialization. We restore a fine-grained sharp scene by leveraging the remarkable reconstruction capability of 3D Gaussian Splatting. Our approach estimates the 6-Degree-of-Freedom camera motion for each blurry observation and synthesizes corresponding blurry renderings for the optimization process. Furthermore, we propose Gaussian Densification Annealing strategy to prevent the generation of inaccurate Gaussians at erroneous locations during the early training stages when camera motion is still imprecise. Comprehensive experiments demonstrate that our DeblurGS achieves state-of-the-art performance in deblurring and novel view synthesis for real-world and synthetic benchmark datasets, as well as field-captured blurry smartphone videos.
Related papers
- EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
We propose a novel deformable 3D Gaussian splatting framework called MotionGS.
MotionGS explores explicit motion priors to guide the deformation of 3D Gaussians.
Experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T08:19:47Z) - LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors [34.91966359570867]
sparse-view reconstruction is inherently ill-posed and under-constrained.
We introduce LM-Gaussian, a method capable of generating high-quality reconstructions from a limited number of images.
Our approach significantly reduces the data acquisition requirements compared to previous 3DGS methods.
arXiv Detail & Related papers (2024-09-05T12:09:02Z) - EaDeblur-GS: Event assisted 3D Deblur Reconstruction with Gaussian Splatting [8.842593320829785]
Event-assisted 3D Deblur Reconstruction with Gaussian Splatting (EaDeblur-GS) is presented.
It integrates event camera data to enhance the robustness of 3DGS against motion blur.
It achieves sharp 3D reconstructions in real-time, demonstrating performance comparable to state-of-the-art methods.
arXiv Detail & Related papers (2024-07-18T13:55:54Z) - CRiM-GS: Continuous Rigid Motion-Aware Gaussian Splatting from Motion Blur Images [12.603775893040972]
We propose continuous rigid motion-aware gaussian splatting (CRiM-GS) to reconstruct accurate 3D scene from blurry images with real-time rendering speed.
We leverage rigid body transformations to model the camera motion with proper regularization, preserving the shape and size of the object.
Furthermore, we introduce a continuous deformable 3D transformation in the textitSE(3) field to adapt the rigid body transformation to real-world problems.
arXiv Detail & Related papers (2024-07-04T13:37:04Z) - EvaGaussians: Event Stream Assisted Gaussian Splatting from Blurry Images [39.584967370302735]
3D Gaussian Splatting (3D-GS) has demonstrated exceptional capabilities in 3D scene reconstruction and novel view synthesis.
We introduce Event Stream Assisted Gaussian Splatting (EvaGaussians), a novel approach that integrates event streams captured by an event camera to assist in reconstructing high-quality 3D-GS from blurry images.
arXiv Detail & Related papers (2024-05-29T04:59:27Z) - Gaussian Splatting on the Move: Blur and Rolling Shutter Compensation for Natural Camera Motion [25.54868552979793]
We present a method that adapts to camera motion and allows high-quality scene reconstruction with handheld video data.
Our results with both synthetic and real data demonstrate superior performance in mitigating camera motion over existing methods.
arXiv Detail & Related papers (2024-03-20T06:19:41Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - Towards Nonlinear-Motion-Aware and Occlusion-Robust Rolling Shutter
Correction [54.00007868515432]
Existing methods face challenges in estimating the accurate correction field due to the uniform velocity assumption.
We propose a geometry-based Quadratic Rolling Shutter (QRS) motion solver, which precisely estimates the high-order correction field of individual pixels.
Our method surpasses the state-of-the-art by +4.98, +0.77, and +4.33 of PSNR on Carla-RS, Fastec-RS, and BS-RSC datasets, respectively.
arXiv Detail & Related papers (2023-03-31T15:09:18Z) - Spatiotemporal Bundle Adjustment for Dynamic 3D Human Reconstruction in
the Wild [49.672487902268706]
We present a framework that jointly estimates camera temporal alignment and 3D point triangulation.
We reconstruct 3D motion trajectories of human bodies in events captured by multiple unsynchronized and unsynchronized video cameras.
arXiv Detail & Related papers (2020-07-24T23:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.