論文の概要: A framework for annotating and modelling intentions behind metaphor use
- arxiv url: http://arxiv.org/abs/2407.03952v1
- Date: Thu, 4 Jul 2024 14:13:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 17:43:28.636590
- Title: A framework for annotating and modelling intentions behind metaphor use
- Title(参考訳): 比喩的使用の背景にある意図の注釈とモデル化のための枠組み
- Authors: Gianluca Michelli, Xiaoyu Tong, Ekaterina Shutova,
- Abstract要約: 本稿では,9つのカテゴリーから構成されるメタファーに起因した意図の新たな分類法を提案する。
また、メタファの使用の背後にある意図に注釈を付けた最初のデータセットもリリースしました。
このデータセットを用いて、メタファー使用の背景にある意図を、ゼロテキストおよびインコンテキストの少数ショット設定で推測する際の、大きな言語モデル(LLM)の機能をテストする。
- 参考スコア(独自算出の注目度): 12.40493670580608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metaphors are part of everyday language and shape the way in which we conceptualize the world. Moreover, they play a multifaceted role in communication, making their understanding and generation a challenging task for language models (LMs). While there has been extensive work in the literature linking metaphor to the fulfilment of individual intentions, no comprehensive taxonomy of such intentions, suitable for natural language processing (NLP) applications, is available to present day. In this paper, we propose a novel taxonomy of intentions commonly attributed to metaphor, which comprises 9 categories. We also release the first dataset annotated for intentions behind metaphor use. Finally, we use this dataset to test the capability of large language models (LLMs) in inferring the intentions behind metaphor use, in zero- and in-context few-shot settings. Our experiments show that this is still a challenge for LLMs.
- Abstract(参考訳): メタファーは日常言語の一部であり、世界を概念化する方法を形成する。
さらに、彼らはコミュニケーションにおいて多面的な役割を担い、言語モデル(LM)の理解と生成を困難にしている。
個別の意図の充足と比喩を結びつけた文献には広範な研究があるが、自然言語処理(NLP)に適合する、そのような意図の包括的分類は、現在まで存在しない。
本稿では,9つのカテゴリーから構成されるメタファーによる意図の新たな分類法を提案する。
また、メタファの使用の背後にある意図に注釈を付けた最初のデータセットもリリースしました。
最後に、このデータセットを使用して、メタファー使用の背景にある意図を、ゼロテキストおよびインコンテキストのいくつかのショット設定で推測する際の、大きな言語モデル(LLM)の機能をテストする。
我々の実験は、まだLLMにとって挑戦であることを示している。
関連論文リスト
- Unveiling the Invisible: Captioning Videos with Metaphors [43.53477124719281]
本稿では,VL(Vision-Language)タスクについて紹介する。
この作業を容易にするために,705の動画と2115の人書きキャプションでデータセットを構築し,リリースする。
また,提案課題における SoTA ビデオ言語モデルに匹敵する性能を持つ低リソースなビデオメタファキャプションシステム GIT-LLaVA を提案する。
論文 参考訳(メタデータ) (2024-06-07T12:32:44Z) - Metaphor Understanding Challenge Dataset for LLMs [12.444344984005236]
メタファー理解チャレンジデータセット(MUNCH)をリリースする。
MUNCHは、大規模言語モデル(LLM)のメタファー理解能力を評価するように設計されている。
このデータセットは、メタファーの使用を含む文に対して10k以上のパラフレーズと、不適応パラフレーズを含む1.5kのインスタンスを提供する。
論文 参考訳(メタデータ) (2024-03-18T14:08:59Z) - Visually Grounded Language Learning: a review of language games,
datasets, tasks, and models [60.2604624857992]
多くのVision+Language (V+L)タスクは、視覚的モダリティでシンボルをグラウンドできるモデルを作成することを目的として定義されている。
本稿では,V+L分野において提案されるいくつかの課題とモデルについて,系統的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-12-05T02:17:29Z) - I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create
Visual Metaphors [38.70166865926743]
言語メタファーから視覚的メタファーを生成するための新しい課題を提案する。
これは、暗黙的な意味と構成性をモデル化する能力を必要とするため、拡散ベースのテキスト-画像モデルにとって難しいタスクである。
我々は1,540の言語メタファーとそれに関連する視覚的エラボレートのための6,476の視覚的メタファーを含む高品質なデータセットを作成する。
論文 参考訳(メタデータ) (2023-05-24T05:01:10Z) - Leveraging a New Spanish Corpus for Multilingual and Crosslingual
Metaphor Detection [5.9647924003148365]
この研究は、スペインで自然に出現するメタファで注釈付けされた最初のコーパスを示し、メタファ検出を行うシステムを開発するのに十分である。
提示されたデータセットであるCoMetaには、ニュース、政治談話、ウィキペディア、レビューなど、さまざまな分野のテキストが含まれている。
論文 参考訳(メタデータ) (2022-10-19T07:55:36Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
比喩的・比喩的な言語は言論において一般的である。
現代の言語モデルが非リテラルなフレーズをどの程度解釈できるかについては、未解決の疑問が残る。
ウィノグラードスタイルの非文字言語理解タスクであるFig-QAを紹介する。
論文 参考訳(メタデータ) (2022-04-26T23:42:22Z) - Metaphors in Pre-Trained Language Models: Probing and Generalization
Across Datasets and Languages [6.7126373378083715]
大規模事前学習言語モデル(PLM)は、NLPシステムに有用な比喩的知識を符号化する。
本稿では,複数のメタファ検出データセットと4言語について研究する。
実験の結果,PLMにおける文脈表現はメタファー的知識をコード化しており,その大部分は中層にあることが示唆された。
論文 参考訳(メタデータ) (2022-03-26T19:05:24Z) - It's not Rocket Science : Interpreting Figurative Language in Narratives [48.84507467131819]
我々は2つの非構成的図形言語(イディオムとシミュラ)の解釈を研究する。
実験の結果、事前学習された言語モデルのみに基づくモデルは、これらのタスクにおいて人間よりもはるかにひどい性能を示すことがわかった。
また, 知識強化モデルを提案し, 具体的言語を解釈するための人的戦略を採用した。
論文 参考訳(メタデータ) (2021-08-31T21:46:35Z) - Metaphor Generation with Conceptual Mappings [58.61307123799594]
我々は、関連する動詞を置き換えることで、リテラル表現を与えられた比喩文を生成することを目指している。
本稿では,認知領域間の概念マッピングを符号化することで生成過程を制御することを提案する。
教師なしCM-Lexモデルは,近年のディープラーニングメタファ生成システムと競合することを示す。
論文 参考訳(メタデータ) (2021-06-02T15:27:05Z) - Metaphoric Paraphrase Generation [58.592750281138265]
クラウドソーシングを用いてその結果を評価し,メタファー的パラフレーズを評価するための自動指標を開発する。
語彙置換ベースラインは正確なパラフレーズを生成できるが、比喩的でないことが多い。
メタファーマスキングモデルでは,メタファー文の生成に優れ,流布やパラフレーズの品質に関してはほぼ同等に機能する。
論文 参考訳(メタデータ) (2020-02-28T16:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。