MineNetCD: A Benchmark for Global Mining Change Detection on Remote Sensing Imagery
- URL: http://arxiv.org/abs/2407.03971v1
- Date: Thu, 4 Jul 2024 14:45:44 GMT
- Title: MineNetCD: A Benchmark for Global Mining Change Detection on Remote Sensing Imagery
- Authors: Weikang Yu, Xiaokang Zhang, Xiao Xiang Zhu, Richard Gloaguen, Pedram Ghamisi,
- Abstract summary: We introduce MineNetCD, a benchmark designed for global mining change detection using remote sensing imagery.
First, we establish a global mining change detection dataset featuring more than 70k paired patches of bi-temporal high-resolution remote sensing images.
Second, we develop a novel baseline model based on a change-aware Fast Fourier Transform (ChangeFFT) module.
Third, we construct a unified change detection framework that integrates over 13 advanced change detection models.
- Score: 29.38505174142192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monitoring changes triggered by mining activities is crucial for industrial controlling, environmental management and regulatory compliance, yet it poses significant challenges due to the vast and often remote locations of mining sites. Remote sensing technologies have increasingly become indispensable to detect and analyze these changes over time. We thus introduce MineNetCD, a comprehensive benchmark designed for global mining change detection using remote sensing imagery. The benchmark comprises three key contributions. First, we establish a global mining change detection dataset featuring more than 70k paired patches of bi-temporal high-resolution remote sensing images and pixel-level annotations from 100 mining sites worldwide. Second, we develop a novel baseline model based on a change-aware Fast Fourier Transform (ChangeFFT) module, which enhances various backbones by leveraging essential spectrum components within features in the frequency domain and capturing the channel-wise correlation of bi-temporal feature differences to learn change-aware representations. Third, we construct a unified change detection (UCD) framework that integrates over 13 advanced change detection models. This framework is designed for streamlined and efficient processing, utilizing the cloud platform hosted by HuggingFace. Extensive experiments have been conducted to demonstrate the superiority of the proposed baseline model compared with 12 state-of-the-art change detection approaches. Empirical studies on modularized backbones comprehensively confirm the efficacy of different representation learners on change detection. This contribution represents significant advancements in the field of remote sensing and change detection, providing a robust resource for future research and applications in global mining monitoring. Dataset and Codes are available via the link.
Related papers
- Show Me What and Where has Changed? Question Answering and Grounding for Remote Sensing Change Detection [82.65760006883248]
We introduce a new task named Change Detection Question Answering and Grounding (CDQAG)
CDQAG extends the traditional change detection task by providing interpretable textual answers and intuitive visual evidence.
We construct the first CDQAG benchmark dataset, termed QAG-360K, comprising over 360K triplets of questions, textual answers, and corresponding high-quality visual masks.
arXiv Detail & Related papers (2024-10-31T11:20:13Z) - Enhancing Perception of Key Changes in Remote Sensing Image Change Captioning [49.24306593078429]
We propose a novel framework for remote sensing image change captioning, guided by Key Change Features and Instruction-tuned (KCFI)
KCFI includes a ViTs encoder for extracting bi-temporal remote sensing image features, a key feature perceiver for identifying critical change areas, and a pixel-level change detection decoder.
To validate the effectiveness of our approach, we compare it against several state-of-the-art change captioning methods on the LEVIR-CC dataset.
arXiv Detail & Related papers (2024-09-19T09:33:33Z) - Novel Change Detection Framework in Remote Sensing Imagery Using Diffusion Models and Structural Similarity Index (SSIM) [0.0]
Change detection is a crucial task in remote sensing, enabling the monitoring of environmental changes, urban growth, and disaster impact.
Recent advancements in machine learning, particularly generative models like diffusion models, offer new opportunities for enhancing change detection accuracy.
We propose a novel change detection framework that combines the strengths of Stable Diffusion models with the Structural Similarity Index (SSIM) to create robust and interpretable change maps.
arXiv Detail & Related papers (2024-08-20T07:54:08Z) - A Mamba-based Siamese Network for Remote Sensing Change Detection [27.200043694866388]
Change detection in remote sensing images is an essential tool for analyzing a region at different times.
Deep learning methods like CNNs and Transformers have achieved remarkable success in detecting significant changes.
We propose a Mamba-based Change Detector (M-CD) that segments out the regions of interest even better.
arXiv Detail & Related papers (2024-07-08T17:05:48Z) - DDLNet: Boosting Remote Sensing Change Detection with Dual-Domain Learning [5.932234366793244]
Change sensing (RSCD) aims to identify the changes of interest in a region by analyzing multi-temporal remote sensing images.
Existing RSCD methods are devoted to contextual modeling in the spatial domain to enhance the changes of interest.
We propose DNet, a RSCD network based on dual-domain learning (i.e. frequency and spatial domains)
arXiv Detail & Related papers (2024-06-19T14:54:09Z) - ChangeBind: A Hybrid Change Encoder for Remote Sensing Change Detection [16.62779899494721]
Change detection (CD) is a fundamental task in remote sensing (RS) which aims to detect the semantic changes between the same geographical regions at different time stamps.
We propose an effective Siamese-based framework to encode the semantic changes occurring in the bi-temporal RS images.
arXiv Detail & Related papers (2024-04-26T17:47:14Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
We propose a novel Transformer-based learning framework named TransY-Net for remote sensing image CD.
It improves the feature extraction from a global view and combines multi-level visual features in a pyramid manner.
Our proposed method achieves a new state-of-the-art performance on four optical and two SAR image CD benchmarks.
arXiv Detail & Related papers (2023-10-22T07:42:19Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
This paper presents an improved DETR detector that maintains a "plain" nature.
It uses a single-scale feature map and global cross-attention calculations without specific locality constraints.
We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints.
arXiv Detail & Related papers (2023-08-03T17:59:04Z) - Change Detection Methods for Remote Sensing in the Last Decade: A
Comprehensive Review [45.78958623050146]
Change detection is an essential and widely utilized task in remote sensing.
It aims to detect and analyze changes occurring in the same geographical area over time.
Deep learning has emerged as a powerful tool for feature extraction and addressing these challenges.
arXiv Detail & Related papers (2023-05-09T23:52:37Z) - DASNet: Dual attentive fully convolutional siamese networks for change
detection of high resolution satellite images [17.839181739760676]
The research objective is to identity the change information of interest and filter out the irrelevant change information as interference factors.
Recently, the rise of deep learning has provided new tools for change detection, which have yielded impressive results.
We propose a new method, namely, dual attentive fully convolutional Siamese networks (DASNet) for change detection in high-resolution images.
arXiv Detail & Related papers (2020-03-07T16:57:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.