論文の概要: Real-time Cyberattack Detection with Collaborative Learning for Blockchain Networks
- arxiv url: http://arxiv.org/abs/2407.04011v1
- Date: Thu, 4 Jul 2024 15:39:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 17:23:59.687582
- Title: Real-time Cyberattack Detection with Collaborative Learning for Blockchain Networks
- Title(参考訳): ブロックチェーンネットワークのための協調学習によるリアルタイムサイバー攻撃検出
- Authors: Tran Viet Khoa, Do Hai Son, Dinh Thai Hoang, Nguyen Linh Trung, Tran Thi Thuy Quynh, Diep N. Nguyen, Nguyen Viet Ha, Eryk Dutkiewicz,
- Abstract要約: ブロックチェーンネットワークを保護するために,効率的な協調型サイバー攻撃検出モデルを提案する。
提案する検出モデルは,ブロックチェーンネットワークにおける攻撃を最大97%の精度で検出できる。
- 参考スコア(独自算出の注目度): 29.481124078876032
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the ever-increasing popularity of blockchain applications, securing blockchain networks plays a critical role in these cyber systems. In this paper, we first study cyberattacks (e.g., flooding of transactions, brute pass) in blockchain networks and then propose an efficient collaborative cyberattack detection model to protect blockchain networks. Specifically, we deploy a blockchain network in our laboratory to build a new dataset including both normal and attack traffic data. The main aim of this dataset is to generate actual attack data from different nodes in the blockchain network that can be used to train and test blockchain attack detection models. We then propose a real-time collaborative learning model that enables nodes in the network to share learning knowledge without disclosing their private data, thereby significantly enhancing system performance for the whole network. The extensive simulation and real-time experimental results show that our proposed detection model can detect attacks in the blockchain network with an accuracy of up to 97%.
- Abstract(参考訳): ブロックチェーンアプリケーションの人気が絶え間なく高まる中、ブロックチェーンネットワークのセキュア化は、これらのサイバーシステムにおいて重要な役割を担っている。
本稿では,ブロックチェーンネットワークにおけるサイバーアタック(トランザクションの洪水,ブルートパスなど)を最初に研究し,ブロックチェーンネットワークを保護するための効果的な協調型サイバーアタック検出モデルを提案する。
具体的には、通常のトラフィックデータとアタックトラフィックデータの両方を含む新しいデータセットを構築するために、ブロックチェーンネットワークを研究室にデプロイします。
このデータセットの主な目的は、ブロックチェーン攻撃検出モデルのトレーニングとテストに使用できるブロックチェーンネットワーク内のさまざまなノードから、実際の攻撃データを生成することだ。
次に,ネットワーク内のノードがプライベートデータを公開せずに学習知識を共有できるリアルタイム協調学習モデルを提案し,ネットワーク全体のシステム性能を大幅に向上させる。
シミュレーションとリアルタイム実験の結果から,ブロックチェーンネットワーク内の攻撃を最大97%の精度で検出できることがわかった。
関連論文リスト
- A Novel Classification of Attacks on Blockchain Layers: Vulnerabilities, Attacks, Mitigations, and Research Directions [0.8540657305162735]
本調査では,ブロックチェーン攻撃の新たな分類と,ブロックチェーンデータセキュリティに関する詳細な調査を提案する。
さまざまなブロックチェーン層における攻撃の根本的な原因を精査することで、これらのセキュリティ上の懸念の深いダイナミクスを明らかにします。
また、ブロックチェーンにおける量子コンピューティングの影響と、将来利用可能な現在のテクノロジの弱点についても論じる。
論文 参考訳(メタデータ) (2024-04-28T06:40:50Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
我々は、ブロックチェーン対応Web 3.0のための、グラフ注意ネットワーク(GAT)ベースの信頼できるブロック伝搬最適化フレームワークを設計する。
ブロック伝搬の信頼性を実現するために,主観的論理モデルに基づく評価機構を導入する。
グラフ構造化データの処理能力に優れたGATが存在することを考慮し、GATを強化学習に利用して最適なブロック伝搬軌道を得る。
論文 参考訳(メタデータ) (2024-03-20T01:58:38Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - Collaborative Learning Framework to Detect Attacks in Transactions and Smart Contracts [26.70294159598272]
本稿では、ブロックチェーントランザクションとスマートコントラクトの攻撃を検出するために設計された、新しい協調学習フレームワークを提案する。
当社のフレームワークは,マシンコードレベルでの複雑な攻撃を含む,さまざまな種類のブロックチェーン攻撃を分類する機能を示している。
我々のフレームワークは、広範囲なシミュレーションによって約94%の精度を達成し、リアルタイム実験では91%のスループットで毎秒2,150トランザクションを処理している。
論文 参考訳(メタデータ) (2023-08-30T07:17:20Z) - Protecting the Decentralized Future: An Exploration of Common Blockchain
Attacks and their Countermeasures [1.1499361198674167]
サイバー犯罪者を標的に、セキュリティ上の脅威が増えている。
この研究は、ブロックチェーン攻撃の緩和に関する詳細な分析を提供することを目的としている。
この調査は、ブロックチェーンアプリケーションの特定のニーズを考慮に入れることがいかに重要かも強調している。
論文 参考訳(メタデータ) (2023-06-20T20:56:06Z) - Block Hunter: Federated Learning for Cyber Threat Hunting in
Blockchain-based IIoT Networks [0.0]
We use Federated Learning (FL) to build a threat hunting framework called Block Hunter to automatically hunt for attack in IIoT network。
以上の結果から,Block Hunterの異常な動作を高精度かつ最小限の帯域幅で検出する効果が証明された。
論文 参考訳(メタデータ) (2022-04-21T00:45:30Z) - Collaborative Learning for Cyberattack Detection in Blockchain Networks [29.481124078876032]
本稿では、侵入攻撃を調査し、ブロックチェーンネットワークのネットワーク層におけるサイバー攻撃を検出する新しいサイバー攻撃検出フレームワークを開発することを目的とする。
ブロックチェーンネットワークに効率的に配置して攻撃を検知できる新しい協調学習モデルを提案する。
集中シミュレーションと実時間実験の両方で、我々の提案した侵入検知フレームワークが攻撃検出において最大98.6%の精度を達成できることが明らかに示されている。
論文 参考訳(メタデータ) (2022-03-21T15:55:41Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Quantum-resistance in blockchain networks [46.63333997460008]
本稿では、ブロックチェーンネットワークにおける量子脅威を特定し、排除するために、米国間開発銀行、IDBラボ、LACChain、量子コンピューティング(CQC)、Tecnologicalo de Monterreyによる研究について述べる。
量子コンピューティングの出現は、非量子耐性暗号アルゴリズムを利用するため、インターネットプロトコルやブロックチェーンネットワークを脅かす。
論文 参考訳(メタデータ) (2021-06-11T23:39:25Z) - Firearm Detection and Segmentation Using an Ensemble of Semantic Neural
Networks [62.997667081978825]
本稿では,意味的畳み込みニューラルネットワークのアンサンブルに基づく兵器検出システムを提案する。
特定のタスクに特化した単純なニューラルネットワークのセットは、計算リソースを少なくし、並列にトレーニングすることができる。
個々のネットワークの出力の集約によって与えられるシステムの全体的な出力は、ユーザが偽陽性と偽陰性とをトレードオフするように調整することができる。
論文 参考訳(メタデータ) (2020-02-11T13:58:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。