論文の概要: Occupancy as Set of Points
- arxiv url: http://arxiv.org/abs/2407.04049v1
- Date: Thu, 4 Jul 2024 16:46:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 17:14:12.637595
- Title: Occupancy as Set of Points
- Title(参考訳): ポイントの集合としての業務
- Authors: Yiang Shi, Tianheng Cheng, Qian Zhang, Wenyu Liu, Xinggang Wang,
- Abstract要約: Occupancy as Set of Points (OSP)は、ポイントベースの3D占有率予測のための新しいフレームワークである。
OSPは既存のメソッドと比較して高いパフォーマンスを実現し、トレーニングや推論の点で優れています。
Occ3D nuScenes占有ベンチマークの実験によると、OSPはパフォーマンスと柔軟性が強い。
- 参考スコア(独自算出の注目度): 38.89907248893168
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we explore a novel point representation for 3D occupancy prediction from multi-view images, which is named Occupancy as Set of Points. Existing camera-based methods tend to exploit dense volume-based representation to predict the occupancy of the whole scene, making it hard to focus on the special areas or areas out of the perception range. In comparison, we present the Points of Interest (PoIs) to represent the scene and propose OSP, a novel framework for point-based 3D occupancy prediction. Owing to the inherent flexibility of the point-based representation, OSP achieves strong performance compared with existing methods and excels in terms of training and inference adaptability. It extends beyond traditional perception boundaries and can be seamlessly integrated with volume-based methods to significantly enhance their effectiveness. Experiments on the Occ3D nuScenes occupancy benchmark show that OSP has strong performance and flexibility. Code and models are available at \url{https://github.com/hustvl/osp}.
- Abstract(参考訳): 本稿では,複数視点画像からの3次元占有予測のための新しい点表現について検討する。
既存のカメラベースの手法では、シーン全体の占有率を予測するために、密度の高いボリュームベースの表現を利用する傾向があるため、知覚範囲外の特別な領域や領域に焦点を合わせることは困難である。
それに対して,本論文では,このシーンを表現するためのPoI(Points of Interest)を提案し,ポイントベースの3D占有予測のための新しいフレームワークであるOSPを提案する。
ポイントベース表現の固有の柔軟性のため、OSPは既存の手法と比較して高い性能を達成し、トレーニングや推論の適応性の点で優れている。
従来の知覚境界を超えて拡張され、ボリュームベースの手法とシームレスに統合することで、その効果を著しく向上することができる。
Occ3D nuScenes占有ベンチマークの実験によると、OSPはパフォーマンスと柔軟性が強い。
コードとモデルは \url{https://github.com/hustvl/osp} で公開されている。
関連論文リスト
- Neural Attention Field: Emerging Point Relevance in 3D Scenes for One-Shot Dexterous Grasping [34.98831146003579]
被写体と文脈のバリエーションのある新しいシーンに、巧妙なつかみをワンショットで移動させることは、難しい問題である。
本稿では,3次元空間における意味認識型高次特徴体を表現するためのテクスチュラルアテンション場を提案する。
論文 参考訳(メタデータ) (2024-10-30T14:06:51Z) - ViewFormer: Exploring Spatiotemporal Modeling for Multi-View 3D Occupancy Perception via View-Guided Transformers [9.271932084757646]
3Dの占有は、前景と背景を物理的空間で区別することなく、全体のシーンをグリッドマップに表現する。
本稿では,効果的な多視点特徴集約のための学習優先視点アテンション機構を提案する。
既存の高品質データセットの上に構築されたベンチマークであるFlowOcc3Dを紹介します。
論文 参考訳(メタデータ) (2024-05-07T13:15:07Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
マルチビュー画像を用いた3次元シーンの占有状況とセマンティクスを推定することを目的とした,新たな課題である3D占有予測手法を提案する。
本稿では,RandOccを提案する。Rendering Assisted distillation paradigm for 3D Occupancy prediction。
論文 参考訳(メタデータ) (2023-12-19T03:39:56Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
本稿では,点雲を効果的かつ包括的に表現する円筒型三重対視図を提案する。
また,LiDAR点雲の距離分布を考慮し,円筒座標系における三点ビューを構築した。
プロジェクション中に構造の詳細を維持するために空間群プーリングを使用し、各TPV平面を効率的に処理するために2次元バックボーンを採用する。
論文 参考訳(メタデータ) (2023-08-31T17:57:17Z) - Scene as Occupancy [66.43673774733307]
OccNetは、カスケードと時間ボクセルデコーダを備えたビジョン中心のパイプラインで、3D占有を再構築する。
nuScenes上に構築された最初の高密度3D占有率ベンチマークであるOpenOccを提案する。
論文 参考訳(メタデータ) (2023-06-05T13:01:38Z) - CPPF++: Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation [67.12857074801731]
そこで本研究では,シミュレートからリアルなポーズ推定のための新しい手法であるCPPF++を提案する。
投票衝突による課題に対処するため,投票の不確実性をモデル化する新たなアプローチを提案する。
ノイズの多いペアフィルタリング、オンラインアライメント最適化、機能アンサンブルなど、いくつかの革新的なモジュールを組み込んでいます。
論文 参考訳(メタデータ) (2022-11-24T03:27:00Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
動的情報モデリングを用いた新しい3次元オブジェクト検出フレームワークを提案する。
粗い予測は、ボクセルベースの領域提案ネットワークを介して第1段階で生成される。
大規模なnuScenes 3D検出ベンチマークで実験を行った。
論文 参考訳(メタデータ) (2020-07-16T18:27:08Z) - Self-Supervised Joint Learning Framework of Depth Estimation via
Implicit Cues [24.743099160992937]
深度推定のための自己教師型共同学習フレームワークを提案する。
提案するフレームワークは,KITTIおよびMake3Dデータセット上での最先端(SOTA)よりも優れている。
論文 参考訳(メタデータ) (2020-06-17T13:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。