論文の概要: DotaMath: Decomposition of Thought with Code Assistance and Self-correction for Mathematical Reasoning
- arxiv url: http://arxiv.org/abs/2407.04078v2
- Date: Tue, 9 Jul 2024 15:29:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 22:42:25.624383
- Title: DotaMath: Decomposition of Thought with Code Assistance and Self-correction for Mathematical Reasoning
- Title(参考訳): DotaMath: 数学的推論のためのコードアシストと自己補正による思考の分解
- Authors: Chengpeng Li, Guanting Dong, Mingfeng Xue, Ru Peng, Xiang Wang, Dayiheng Liu,
- Abstract要約: 本稿では,数理推論にコードアシストと自己補正を併用した思考の分解を利用した大規模言語モデル(LLM)について紹介する。
DotaMathモデルは複雑な数学的タスクに対処し、それらをより単純な論理的なサブタスクに分解し、コードを利用してこれらのサブタスクを解決する。
そこで我々は,DotaMathQAの模倣学習を用いて,オープンソースのLLMと比較して優れた性能を示すDotaMathモデルを訓練した。
- 参考スコア(独自算出の注目度): 24.68321102981711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have made impressive progress in handling simple math problems, yet they still struggle with more challenging and complex mathematical tasks. In this paper, we introduce a series of LLMs that employs the Decomposition of thought with code assistance and self-correction for mathematical reasoning, dubbed as DotaMath. DotaMath models tackle complex mathematical tasks by decomposing them into simpler logical subtasks, leveraging code to solve these subtasks, obtaining fine-grained feedback from the code interpreter, and engaging in self-reflection and correction. By annotating diverse interactive tool-use trajectories and employing query evolution on GSM8K and MATH datasets, we generate an instruction fine-tuning dataset called DotaMathQA with 574K query-response pairs. We train a series of base LLMs using imitation learning on DotaMathQA, resulting in DotaMath models that achieve remarkable performance compared to open-source LLMs across various in-domain and out-of-domain benchmarks. Notably, DotaMath-deepseek-7B showcases an outstanding performance of 64.8% on the competitive MATH dataset and 86.7% on GSM8K. Besides, DotaMath-deepseek-7B maintains strong competitiveness on a series of in-domain and out-of-domain benchmarks (Avg. 80.1%). Looking forward, we anticipate that the DotaMath paradigm will open new pathways for addressing intricate mathematical problems. Our code is publicly available at https://github.com/ChengpengLi1003/DotaMath.
- Abstract(参考訳): 大規模言語モデル(LLM)は、単純な数学問題に対処する上で驚くべき進歩を遂げてきたが、それでもより困難で複雑な数学的タスクに苦戦している。
本稿では,数理推論にコードアシストと自己補正を併用した思考分解システムであるDotaMathについて紹介する。
DotaMathモデルは複雑な数学的タスクに対処し、それらをより単純な論理的なサブタスクに分解し、これらのサブタスクを解決するためにコードを活用し、コードインタプリタからきめ細かいフィードバックを取得し、自己回帰と修正を行う。
GSM8KとMATHデータセットに多種多様な対話型ツール利用トラジェクトリを付加し、クエリ進化を利用することにより、574Kのクエリ応答対を持つDotaMathQAと呼ばれる命令微調整データセットを生成する。
そこで我々は,DotaMathQAの模倣学習を用いて一連のベースLLMをトレーニングし,様々なドメイン内およびドメイン外ベンチマークにおけるオープンソースLLMと比較して,優れた性能を実現するDotaMathモデルを作成した。
特にDotaMath-Deepseek-7Bは、競合するMATHデータセットで64.8%、GSM8Kで86.7%の優れたパフォーマンスを示している。
さらにDotaMath-Deepseek-7Bは、一連のドメイン内およびドメイン外ベンチマーク(Avg. 80.1%)で強い競争力を維持している。
今後,DotaMathパラダイムが複雑な数学的問題に対処するための新たな経路を開拓することを期待している。
私たちのコードはhttps://github.com/ChengpengLi1003/DotaMath.comで公開されています。
関連論文リスト
- Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On [55.449818944278526]
一般的な7B言語モデル上での教師付き微調整(SFT)であるSkywork-Mathモデルシリーズを紹介する。
Skywork-Math 7Bは競争レベルのMATHベンチマークで51.2%の精度を達成した。
我々は,LLMの数学推論能力を高めるために,研究用と産業用の両方で,いくつかの実践的なテイクアウトを提供する。
論文 参考訳(メタデータ) (2024-07-11T09:56:51Z) - MuMath-Code: Combining Tool-Use Large Language Models with Multi-perspective Data Augmentation for Mathematical Reasoning [11.426127461122908]
この研究には、マルチパースペクティブなデータ拡張手法による新しい数学の質問が含まれ、その上でコードネストされたソリューションを合成する。
外部Pythonインタプリタと統合したオープン大言語モデル(LLM)は、数学的推論能力を大幅に強化した。
ステージ1では、純粋なCoTデータに基づいてLlama-2を微調整し、中間モデルを取得し、ステージ2のコードネストデータに基づいてトレーニングし、結果のMuMath-Codeを得る。
論文 参考訳(メタデータ) (2024-05-13T08:32:19Z) - MathScale: Scaling Instruction Tuning for Mathematical Reasoning [70.89605383298331]
大規模言語モデル(LLM)は問題解決において顕著な能力を示した。
しかし、数学的な問題を解く能力は依然として不十分である。
高品質な数学的推論データを作成するためのシンプルでスケーラブルな方法であるMathScaleを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:42:59Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible
Pipeline [12.186691561822256]
我々は,大規模言語モデル(LLM)の本質的な性質が,数学的推論のモデル化における課題を提起していると仮定する。
本稿では,Pythonコードインタプリタを利用した新しい数学データセットを提案する。
本稿では,数学固有のLLMの微調整のための仮的かつ容易に複製可能なプロトコルを提案する。
論文 参考訳(メタデータ) (2024-01-16T08:08:01Z) - MuggleMath: Assessing the Impact of Query and Response Augmentation on Math Reasoning [54.2093509928664]
大規模言語モデルを用いた数学推論では、クエリの進化と多様な推論経路による微調整データ拡張が実験的に有効である。
本研究では,数理推論におけるそのようなデータ拡張に関する調査を行い,これらの疑問に答えることを意図している。
コードと拡張データはhttps://github.com/OFA-Sys/8k-Scel.comで公開しています。
論文 参考訳(メタデータ) (2023-10-09T08:18:58Z) - MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical
Reasoning [52.97768001837269]
本稿では,オープンソース言語モデルを微調整する手法を提案する。
本稿では,問題のある新しい,高品質なデータセットを生成する手法とそのコードベースソリューションを提案する。
このアプローチは、問題の解決にコードベースのソリューションを生成することができるモデルのファミリーであるMathCoderモデルを生成する。
論文 参考訳(メタデータ) (2023-10-05T17:52:09Z) - MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models [91.66694225955872]
数学的推論を専門とする微調整言語モデルであるMetaMathを提案する。
具体的には、余分な知識を伴わずに複数の視点から質問を書き換えることで、数学的質問をブートストラップすることから始める。
私たちは、すべてのMetaMathQAデータセット、異なるモデルサイズを持つMetaMathモデル、パブリック使用のためのトレーニングコードをリリースします。
論文 参考訳(メタデータ) (2023-09-21T17:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。