論文の概要: AI-Assisted Generation of Difficult Math Questions
- arxiv url: http://arxiv.org/abs/2407.21009v3
- Date: Sat, 5 Oct 2024 09:39:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 13:51:33.688869
- Title: AI-Assisted Generation of Difficult Math Questions
- Title(参考訳): 難解な数学質問のAIによる生成
- Authors: Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Jiatong Yu, Yinghui He, Nan Rosemary Ke, Michael Mozer, Yoshua Bengio, Sanjeev Arora, Anirudh Goyal,
- Abstract要約: 現在の訓練は、数学的推論をコア能力として位置づけている。
多様で挑戦的な数学の質問には、控えめな需要がある。
本稿では,LLMの強みとHuman-in-the-loopアプローチを組み合わせた設計枠組みを提案する。
- 参考スコア(独自算出の注目度): 78.7547836422727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current LLM training positions mathematical reasoning as a core capability. With publicly available sources fully tapped, there is unmet demand for diverse and challenging math questions. Relying solely on human experts is both time-consuming and costly, while LLM-generated questions often lack the requisite diversity and difficulty. We present a design framework that combines the strengths of LLMs with a human-in-the-loop approach to generate a diverse array of challenging math questions. We leverage LLM metacognition skills [Didolkar et al., 2024] of a strong LLM to extract core "skills" from existing math datasets. These skills serve as the basis for generating novel and difficult questions by prompting the LLM with random pairs of core skills. The use of two different skills within each question makes finding such questions an "out of distribution" task for both LLMs and humans. Our pipeline employs LLMs to iteratively generate and refine questions and solutions through multiturn prompting. Human annotators then verify and further refine the questions, with their efficiency enhanced via further LLM interactions. Applying this pipeline on skills extracted from the MATH dataset [Hendrycks et al., 2021] resulted in MATH$^2$ - a dataset of higher-quality math questions, as evidenced by: (a) Lower performance of all models on MATH$^2$ than on MATH (b) Higher performance on MATH when using MATH$^2$ questions as in-context examples. Although focused on mathematics, our methodology seems applicable to other domains requiring structured reasoning, and potentially as a component of scalable oversight. Also of interest is a striking relationship observed between models' performance on the new dataset: the success rate on MATH$^2$ is the square on MATH, suggesting that successfully solving the question in MATH$^2$ requires a nontrivial combination of two distinct math skills.
- Abstract(参考訳): 現在のLLMトレーニングは、数学的推論をコア能力として位置づけている。
公開されているソースが完全にタップされているため、多様で挑戦的な数学問題に対する需要は計り知れない。
人間の専門家だけを頼りにすることは時間も費用もかかるが、LSMが生み出す質問には必要な多様性と難易度が欠けていることが多い。
本稿では,LLMの強みとループ型アプローチを組み合わせることで,多種多様な難解な数学問題を生成する設計枠組みを提案する。
我々は,LLMのメタ認知能力(Didolkar et al , 2024)を活用し,既存の数学データセットからコア"スキル"を抽出する。
これらのスキルは、ランダムなコアスキルのペアでLLMに促すことによって、新しくて難しい質問を生成する基盤となる。
各質問における2つの異なるスキルの使用により、そのような質問を見つけることは、LLMと人間の両方にとって「配布外」タスクとなる。
私たちのパイプラインでは、マルチターンプロンプトを通じて質問やソリューションを反復的に生成し、洗練するためにLLMを採用しています。
人間のアノテータは質問を検証し、さらに洗練し、その効率はさらなるLSM相互作用によって向上する。
このパイプラインをMATHデータセット(Hendrycks et al , 2021)から抽出したスキルに適用することにより,MATH$^2$ – 高品質な数学質問のデータセットが得られた。
(a)MATH$^2$における全てのモデルのMATHよりも低い性能
(b)MATH$^2$の質問をコンテキスト内例として使用する場合,MATH上でのパフォーマンスが向上する。
数学に重点を置いているが、我々の方法論は構造化推論を必要とする他の領域に適用できるようであり、スケーラブルな監視のコンポーネントとして考えられる。
MATH$^2$における成功率はMATHの正方形であり、MATH$^2$における問題の解決には2つの異なる数学スキルの非自明な組み合わせが必要であることを示唆している。
関連論文リスト
- MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
大規模言語モデル(LLM)は、非常に高度な自然言語理解を持ち、強力な問題解決能力を示した。
本稿では,新たに開発された"MathOdyssey"データセットを用いて,LLMの数学的問題解決能力について検討する。
論文 参考訳(メタデータ) (2024-06-26T13:02:35Z) - Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models [62.815222721144636]
我々は、LLaVA-1.5ベースのMathV360Kで微調整されたモデルであるMath-LLaVAを紹介する。
この手法はLLaVA-1.5のマルチモーダル数学的推論能力を著しく改善する。
Math-LLaVAは、MMMUベンチマークで大幅に改善された一般化性を示している。
論文 参考訳(メタデータ) (2024-06-25T05:43:21Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Can LLMs Master Math? Investigating Large Language Models on Math Stack Exchange [25.419977967846144]
大規模言語モデル(LLM)は、様々な自然言語タスクにおいて例外的な機能を示した。
本稿では、複雑な数学的問題解決をナビゲートする上でのLLMの限界について考察する。
論文 参考訳(メタデータ) (2024-03-30T12:48:31Z) - MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems? [99.0305256706604]
MLLMの公平かつ詳細な評価のために設計された全周視覚数学ベンチマークであるMathVerseを紹介する。
我々は,2,612の高品位・多目的数学問題を,公開情報源の図を用いて慎重に収集する。
このアプローチにより、MathVerseは、数学的推論のためのビジュアルダイアグラムを、どの程度のMLLMが真に理解できるかを包括的に評価することができる。
論文 参考訳(メタデータ) (2024-03-21T17:59:50Z) - MathScale: Scaling Instruction Tuning for Mathematical Reasoning [70.89605383298331]
大規模言語モデル(LLM)は問題解決において顕著な能力を示した。
しかし、数学的な問題を解く能力は依然として不十分である。
高品質な数学的推論データを作成するためのシンプルでスケーラブルな方法であるMathScaleを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:42:59Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning [2.9104279358536647]
数学的推論のためのツール強化された大規模言語モデルであるMathSenseiを提案する。
ツールの補完的な利点として、知識検索(Bing Web Search)、プログラムジェネレータ+エグゼキュータ(Python)、記号方程式ソルバ(Wolfram-Alpha API)について検討する。
論文 参考訳(メタデータ) (2024-02-27T05:50:35Z) - Learning Multi-Step Reasoning by Solving Arithmetic Tasks [6.398022050054328]
本研究では,比較的小さな言語モデルを多段階推論の能力に組み込む方法について検討する。
我々は,合成データセットMsAT上でLMを継続的に事前学習することにより,そのような能力を注入することを提案する。
提案手法の有効性を示す4つの数学単語問題データセットについて実験を行った。
論文 参考訳(メタデータ) (2023-06-02T17:29:22Z) - MathPrompter: Mathematical Reasoning using Large Language Models [7.953723258038284]
大規模言語モデル (LLM) は算術的推論タスクを解く際の性能に制限がある。
MathPrompterはZero-shot-of- Thoughtプロンプト技術を使って複数の代数式やPython関数を生成し、異なる方法で同じ数学問題を解く。
論文 参考訳(メタデータ) (2023-03-04T04:43:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。