A Predictive and Optimization Approach for Enhanced Urban Mobility Using Spatiotemporal Data
- URL: http://arxiv.org/abs/2410.05358v1
- Date: Mon, 7 Oct 2024 16:16:49 GMT
- Title: A Predictive and Optimization Approach for Enhanced Urban Mobility Using Spatiotemporal Data
- Authors: Shambhavi Mishra, T. Satyanarayana Murthy,
- Abstract summary: This study introduces a novel method for enhancing urban mobility by combining machine learning algorithms with live traffic information.
We developed predictive models for journey time and congestion analysis using data from New York City's yellow taxi trips.
This research contributes to ongoing efforts aimed at reducing urban congestion and improving transportation efficiency through advanced data-driven methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In modern urban centers, effective transportation management poses a significant challenge, with traffic jams and inconsistent travel durations greatly affecting commuters and logistics operations. This study introduces a novel method for enhancing urban mobility by combining machine learning algorithms with live traffic information. We developed predictive models for journey time and congestion analysis using data from New York City's yellow taxi trips. The research employed a spatiotemporal analysis framework to identify traffic trends and implemented real-time route optimization using the GraphHopper API. This system determines the most efficient paths based on current conditions, adapting to changes in traffic flow. The methodology utilizes Spark MLlib for predictive modeling and Spark Streaming for processing data in real-time. By integrating historical data analysis with current traffic inputs, our system shows notable enhancements in both travel time forecasts and route optimization, demonstrating its potential for widespread application in major urban areas. This research contributes to ongoing efforts aimed at reducing urban congestion and improving transportation efficiency through advanced data-driven methods.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Advanced Artificial Intelligence Strategy for Optimizing Urban Rail Network Design using Nature-Inspired Algorithms [0.0]
This study introduces an innovative methodology for the planning of metro network routes within the urban environment of Chennai, Tamil Nadu, India.
A comparative analysis of the modified Ant Colony Optimization (ACO) method with recent breakthroughs in nature-inspired algorithms demonstrates the modified ACO's superiority over modern techniques.
arXiv Detail & Related papers (2024-07-04T17:57:39Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - TrafPS: A Shapley-based Visual Analytics Approach to Interpret Traffic [39.8945062366245]
TrafPS is a visual analytics approach for interpreting traffic prediction outcomes to support decision-making in traffic management and urban planning.
Based on the task requirement from the domain experts, we employ an interactive visual interface for multi-aspect exploration and analysis of significant flow patterns.
Two real-world case studies demonstrate the effectiveness of TrafPS in identifying key routes and decision-making support for urban planning.
arXiv Detail & Related papers (2024-03-07T01:00:55Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
We show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads.
We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion.
arXiv Detail & Related papers (2023-04-01T01:23:10Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - An ASP Framework for Efficient Urban Traffic Optimization [0.0]
This paper presents a framework which allows to efficiently simulate and optimize traffic flow in a large roads' network with hundreds of vehicles.
The framework leverages on an Answer Set Programming (ASP) encoding to formally describe the movements of vehicles inside a network.
It is then possible to optimize the routes of vehicles inside the network to reduce a range of relevant metrics.
arXiv Detail & Related papers (2022-08-05T10:50:38Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - TSSRGCN: Temporal Spectral Spatial Retrieval Graph Convolutional Network
for Traffic Flow Forecasting [41.87633457352356]
This paper proposes a neural network model that focuses on the globality and locality of traffic networks.
Experiments on two real-world datasets show that the model can scrutinize the spatial-temporal correlation of traffic data.
arXiv Detail & Related papers (2020-11-30T09:21:43Z) - Traffic Modelling and Prediction via Symbolic Regression on Road Sensor
Data [0.8602553195689513]
We propose a novel and accurate traffic flow prediction method based on symbolic regression enhanced with a lag operator.
Our approach produces robust models suitable for the intricacies of urban roads, much more difficult to predict than highways.
arXiv Detail & Related papers (2020-02-14T16:03:04Z) - Street-level Travel-time Estimation via Aggregated Uber Data [2.838842554577539]
Estimating temporal patterns in travel times along road segments in urban settings is of central importance to traffic engineers and city planners.
We propose a methodology to leverage coarse-grained and aggregated travel time data to estimate the street-level travel times of a given metropolitan area.
arXiv Detail & Related papers (2020-01-13T21:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.