Quantum algorithm for partial differential equations of non-conservative systems with spatially varying parameters
- URL: http://arxiv.org/abs/2407.05019v1
- Date: Sat, 6 Jul 2024 09:23:04 GMT
- Title: Quantum algorithm for partial differential equations of non-conservative systems with spatially varying parameters
- Authors: Yuki Sato, Hiroyuki Tezuka, Ruho Kondo, Naoki Yamamoto,
- Abstract summary: Partial differential equations (PDEs) are crucial for modeling various physical phenomena such as heat transfer, fluid flow, and electromagnetic waves.
In computer-aided engineering (CAE), the ability to handle fine resolutions and large computational models is essential for improving product performance and reducing development costs.
We propose a quantum algorithm for solving second-order linear PDEs of non-conservative systems with spatially varying parameters.
- Score: 1.7453899104963828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial differential equations (PDEs) are crucial for modeling various physical phenomena such as heat transfer, fluid flow, and electromagnetic waves. In computer-aided engineering (CAE), the ability to handle fine resolutions and large computational models is essential for improving product performance and reducing development costs. However, solving large-scale PDEs, particularly for systems with spatially varying material properties, poses significant computational challenges. In this paper, we propose a quantum algorithm for solving second-order linear PDEs of non-conservative systems with spatially varying parameters, using the linear combination of Hamiltonian simulation (LCHS) method. Our approach transforms those PDEs into ordinary differential equations represented by qubit operators, through spatial discretization using the finite difference method. Then, we provide an algorithm that efficiently constructs the operator corresponding to the spatially varying parameters of PDEs via a logic minimization technique, which reduces the number of terms and subsequently the circuit depth. We also develop a scalable method for realizing a quantum circuit for LCHS, using a tensor-network-based technique, specifically a matrix product state (MPS). We validate our method with applications to the acoustic equation with spatially varying parameters and the dissipative heat equation. Our approach includes a detailed recipe for constructing quantum circuits for PDEs, leveraging efficient encoding of spatially varying parameters of PDEs and scalable implementation of LCHS, which we believe marks a significant step towards advancing quantum computing's role in solving practical engineering problems.
Related papers
- Learning To Solve Differential Equation Constrained Optimization Problems [44.27620230177312]
This paper introduces a learning-based approach to DE-constrained optimization that combines techniques from proxy optimization and neural differential equations.
It produces results up to 25 times more precise than other methods which do not explicitly model the system's dynamic equations.
arXiv Detail & Related papers (2024-10-02T17:42:16Z) - A New Variational Quantum Algorithm Based on Lagrange Polynomial Encoding to Solve Partial Differential Equations [0.0]
Partial Differential Equations (PDEs) serve as the cornerstone for a wide range of scientific endeavours.
Finding solutions to PDEs often exceeds the capabilities of traditional computational approaches.
Recent advances in quantum computing have triggered a growing interest from researchers for the design of quantum algorithms for solving PDEs.
arXiv Detail & Related papers (2024-07-23T10:11:44Z) - Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs [0.0]
We introduce a method that combines neural operators, physics-informed machine learning, and standard numerical methods for solving PDEs.
We can parametrically solve partial differential equations in a data-free manner and provide accurate sensitivities.
Our study focuses on the steady-state heat equation within heterogeneous materials.
arXiv Detail & Related papers (2024-07-04T21:23:12Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Approximation of Solution Operators for High-dimensional PDEs [2.3076986663832044]
We propose a finite-dimensional control-based method to approximate solution operators for evolutional partial differential equations.
Results are presented for several high-dimensional PDEs, including real-world applications to solving Hamilton-Jacobi-Bellman equations.
arXiv Detail & Related papers (2024-01-18T21:45:09Z) - Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems [2.707154152696381]
We propose efficient quantum algorithms for solving nonlinear differential equations (SDE) via the associated Fokker-Planck equation (FPE)
We discretize the FPE in space and time using two well-known numerical schemes, namely Chang-Cooper and implicit finite difference.
We then compute the solution of the resulting system of linear equations using the quantum linear systems.
arXiv Detail & Related papers (2023-03-04T17:40:23Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Solving Coupled Differential Equation Groups Using PINO-CDE [42.363646159367946]
PINO-CDE is a deep learning framework for solving coupled differential equation groups (CDEs)
Based on the theory of physics-informed neural operator (PINO), PINO-CDE uses a single network for all quantities in a CDEs.
This framework integrates engineering dynamics and deep learning technologies and may reveal a new concept for CDEs solving and uncertainty propagation.
arXiv Detail & Related papers (2022-10-01T08:39:24Z) - Solving nonlinear differential equations with differentiable quantum
circuits [21.24186888129542]
We propose a quantum algorithm to solve systems of nonlinear differential equations.
We use automatic differentiation to represent function derivatives in an analytical form as differentiable quantum circuits.
We show how this approach can implement a spectral method for solving differential equations in a high-dimensional feature space.
arXiv Detail & Related papers (2020-11-20T13:21:11Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.