Integration of physics-informed operator learning and finite element
method for parametric learning of partial differential equations
- URL: http://arxiv.org/abs/2401.02363v1
- Date: Thu, 4 Jan 2024 17:01:54 GMT
- Title: Integration of physics-informed operator learning and finite element
method for parametric learning of partial differential equations
- Authors: Shahed Rezaei, Ahmad Moeineddin, Michael Kaliske, Markus Apel
- Abstract summary: We present a method that employs physics-informed deep learning techniques for solving partial differential equations.
The focus is on the steady-state heat equations within heterogeneous solids exhibiting significant phase contrast.
We benchmark our methodology against the standard finite element method, demonstrating accurate yet faster predictions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method that employs physics-informed deep learning techniques
for parametrically solving partial differential equations. The focus is on the
steady-state heat equations within heterogeneous solids exhibiting significant
phase contrast. Similar equations manifest in diverse applications like
chemical diffusion, electrostatics, and Darcy flow. The neural network aims to
establish the link between the complex thermal conductivity profiles and
temperature distributions, as well as heat flux components within the
microstructure, under fixed boundary conditions. A distinctive aspect is our
independence from classical solvers like finite element methods for data. A
noteworthy contribution lies in our novel approach to defining the loss
function, based on the discretized weak form of the governing equation. This
not only reduces the required order of derivatives but also eliminates the need
for automatic differentiation in the construction of loss terms, accepting
potential numerical errors from the chosen discretization method. As a result,
the loss function in this work is an algebraic equation that significantly
enhances training efficiency. We benchmark our methodology against the standard
finite element method, demonstrating accurate yet faster predictions using the
trained neural network for temperature and flux profiles. We also show higher
accuracy by using the proposed method compared to purely data-driven approaches
for unforeseen scenarios.
Related papers
- Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs [0.0]
We introduce a method that combines neural operators, physics-informed machine learning, and standard numerical methods for solving PDEs.
We can parametrically solve partial differential equations in a data-free manner and provide accurate sensitivities.
Our study focuses on the steady-state heat equation within heterogeneous materials.
arXiv Detail & Related papers (2024-07-04T21:23:12Z) - A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains [33.7054351451505]
We propose a novel finite element-based physics operator learning framework that allows for predicting dynamics governed by partial differential equations (PDEs)
The proposed operator learning framework takes a temperature field at the current time step as input and predicts a temperature field at the next time step.
Networks successfully predict the temperature evolution over time for any initial temperature field at high accuracy compared to the FEM solution.
arXiv Detail & Related papers (2024-05-21T02:41:40Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
We propose D-CIPHER, which is robust to measurement artifacts and can uncover a new and very general class of differential equations.
We further design a novel optimization procedure, CoLLie, to help D-CIPHER search through this class efficiently.
arXiv Detail & Related papers (2022-06-21T17:59:20Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - A Combined Data-driven and Physics-driven Method for Steady Heat
Conduction Prediction using Deep Convolutional Neural Networks [39.46616349629182]
We propose a combined-driven method for learning acceleration and more accurate solutions.
For the data-driven based method, the introduction of physical equation not only is able to speed up the convergence, but also produces physically more consistent solutions.
For the physics-driven based method, it is observed that the combined method is able to speed up the convergence up to 49.0% by using a not very restrictive coarse reference.
arXiv Detail & Related papers (2020-05-16T22:29:37Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
We present a new hybrid physics-based machine-learning approach to reservoir modeling.
The methodology relies on a series of deep adversarial neural network architecture with physics-based regularization.
The proposed methodology is a simple and elegant way to instill physical knowledge to machine-learning algorithms.
arXiv Detail & Related papers (2020-01-15T08:20:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.