論文の概要: Orchestrating LLMs with Different Personalizations
- arxiv url: http://arxiv.org/abs/2407.04181v1
- Date: Thu, 4 Jul 2024 22:55:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 14:50:59.606532
- Title: Orchestrating LLMs with Different Personalizations
- Title(参考訳): パーソナライゼーションの異なるLLMのオーケストレーション
- Authors: Jin Peng Zhou, Katie Z Luo, Jingwen Gu, Jason Yuan, Kilian Q. Weinberger, Wen Sun,
- Abstract要約: 本稿では,大規模言語モデル(LLM)と個人の嗜好を一致させる新しいアプローチを提案する。
有用性、簡潔性、ユーモアなど、複数の次元に沿って記述された嗜好を踏まえると、ゴールは、この仕様に最もよく準拠する再訓練をせずにLLMを作成することである。
1つの特定の選好次元で訓練された専門的なLSMから始め、各トーケンレベルで出力をマージするブラックボックス法を提案する。
- 参考スコア(独自算出の注目度): 28.344891363780576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach to aligning large language models (LLMs) with individual human preferences, sometimes referred to as Reinforcement Learning from \textit{Personalized} Human Feedback (RLPHF). Given stated preferences along multiple dimensions, such as helpfulness, conciseness, or humor, the goal is to create an LLM without re-training that best adheres to this specification. Starting from specialized expert LLMs, each trained for one such particular preference dimension, we propose a black-box method that merges their outputs on a per-token level. We train a lightweight Preference Control Model (PCM) that dynamically translates the preference description and current context into next-token prediction weights. By combining the expert models' outputs at the token level, our approach dynamically generates text that optimizes the given preference. Empirical tests show that our method matches or surpasses existing preference merging techniques, providing a scalable, efficient alternative to fine-tuning LLMs for individual personalization.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)を個人の嗜好と整合させる新しいアプローチを提案する。
有用性、簡潔性、ユーモアなど、複数の次元に沿って記述された嗜好を踏まえると、ゴールは、この仕様に最もよく準拠する再訓練をせずにLLMを作成することである。
特殊専門家のLSMから、それぞれが特定の選好次元を訓練し、その出力をトーケンレベルでマージするブラックボックス法を提案する。
我々は、好み記述と現在のコンテキストを次トーケン予測重みに動的に変換する軽量なPreference Control Model (PCM) を訓練する。
トークンレベルでの専門家モデルの出力を組み合わせることで、我々のアプローチは与えられた好みを最適化するテキストを動的に生成する。
実証実験により,提案手法は従来の選好マージ手法と一致するか,あるいは超越しているかを示し,個人化のための微調整 LLM に代わるスケーラブルで効率的な代替手段を提供する。
関連論文リスト
- MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
大規模言語モデル(LLM)は、広範なテキストコーパスから広範な知識と顕著な能力を取得する。
LLMをより使いやすくするためには、それらを人間の好みに合わせることが不可欠である。
提案手法は,LLMが推論時に指定される様々な明示的あるいは暗黙的な選好と動的に整合するのを支援することを目的としている。
論文 参考訳(メタデータ) (2024-10-18T05:31:13Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
調整可能な大きな言語モデル(LLM)をトレーニングします。
木構造における3K以上の多ターン会話を含む多ターン嗜好データセットを開発した。
評価のために、慎重に選択された100のサンプルと、会話中にカスタマイズされたアライメント性能を測定するために適切に設計されたメトリクスからなるALOEベンチマークを確立する。
論文 参考訳(メタデータ) (2024-10-04T17:48:29Z) - PersonalLLM: Tailoring LLMs to Individual Preferences [11.717169516971856]
我々は、特定のユーザに対して最大限のメリットを提供するためにLLMを適用することに焦点を当てた、PersonalLLMという公開ベンチマークを提示する。
我々は、ユーザーが不均一な潜伏傾向を示すことを期待する高品質な回答と組み合わせたオープンエンドプロンプトをキュレートする。
私たちのデータセットと生成された個人性は、パーソナライズアルゴリズムを開発するための革新的なテストベッドを提供します。
論文 参考訳(メタデータ) (2024-09-30T13:55:42Z) - LLMs + Persona-Plug = Personalized LLMs [41.60364110693824]
パーソナライゼーションは多くの言語タスクやアプリケーションにおいて重要な役割を担っている。
これにより、大きな言語モデル(LLM)を適用して、ユーザの好みに合わせてカスタマイズされたアウトプットを生成する、さまざまなパーソナライズされたアプローチが開発された。
そこで我々は,LLMモデルを提案する。軽量なプラグインユーザ埋め込みモジュールを用いて,過去の状況をすべてモデル化し,個人毎のユーザ固有の埋め込みを構築する。
論文 参考訳(メタデータ) (2024-09-18T11:54:45Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
大規模言語モデル(LLM)と人間の嗜好との整合性を高める新しいフレームワークを提案する。
私たちのキーとなるアイデアは、小さな(種)データの中で人間の事前知識を活用することです。
本稿では,ノイズ認識型選好学習アルゴリズムを導入し,生成した選好データにおける品質低下のリスクを軽減する。
論文 参考訳(メタデータ) (2024-06-06T18:01:02Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
事前訓練された大規模言語モデル(LLM)は、一貫性のある記事を生成するのに優れていますが、そのアウトプットは非現実的、有毒、あるいはユーザの期待に沿わないかもしれません。
現在のアプローチは、モデルアライメントを改善するために、人間のフィードバックによる強化学習を使うことに重点を置いている。
トークンレベルの微粒化によるLCMアライメント向上手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T20:21:45Z) - PMG : Personalized Multimodal Generation with Large Language Models [20.778869086174137]
本稿では,大規模言語モデル(LLM)を用いたパーソナライズされたマルチモーダル生成手法を提案する。
2つのデータセットに関する広範な実験を通じて、その応用を実証し、その性能を検証する。
PMGのパーソナライゼーションはLPIPSで最大8%向上し, 生成精度は向上した。
論文 参考訳(メタデータ) (2024-04-07T03:05:57Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - Personalized Soups: Personalized Large Language Model Alignment via
Post-hoc Parameter Merging [148.77027765872006]
パーソナライズされたヒューマンフィードバック(RLPHF)問題からの強化学習について検討する。
LLMは、多目的強化学習(MORL)問題としてアライメントをモデル化することで、複数の好みに整列する。
我々は、好みを複数の次元に分解することで、パーソナライズされたアライメントを実現することができることを示す。
論文 参考訳(メタデータ) (2023-10-17T20:22:13Z) - Parameter-Efficient Tuning Helps Language Model Alignment [57.27390187540737]
これまでは主に強化学習(RLHF)と直接選好最適化(DPO)を採用してきた。
コントロール可能な生成は、データフォーマットに関して、より柔軟性を提供します。
パラメータ効率調整(MEET)を併用したアライメントMEntでは,制御トークンの品質が向上する。
論文 参考訳(メタデータ) (2023-10-01T23:27:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。