論文の概要: AriGraph: Learning Knowledge Graph World Models with Episodic Memory for LLM Agents
- arxiv url: http://arxiv.org/abs/2407.04363v1
- Date: Fri, 5 Jul 2024 09:06:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 14:00:02.015262
- Title: AriGraph: Learning Knowledge Graph World Models with Episodic Memory for LLM Agents
- Title(参考訳): AriGraph: LLMエージェントのエピソードメモリを用いた知識グラフワールドモデル学習
- Authors: Petr Anokhin, Nikita Semenov, Artyom Sorokin, Dmitry Evseev, Mikhail Burtsev, Evgeny Burnaev,
- Abstract要約: 本稿では,エージェントが環境探索中に意味記憶とエピソード記憶を統合するメモリグラフを構築する手法であるAriGraphを紹介する。
このグラフ構造は、エージェントの現在の状態と目標に関連する相互接続された概念の効率的な連想的検索を促進する。
提案するメモリアーキテクチャと計画と意思決定を統合したAriadne LLMエージェントが,TextWorld環境において,複雑なタスクをゼロショットベースで効果的に処理できることを実証した。
- 参考スコア(独自算出の注目度): 19.249596397679856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancements in generative AI have broadened the potential applications of Large Language Models (LLMs) in the development of autonomous agents. Achieving true autonomy requires accumulating and updating knowledge gained from interactions with the environment and effectively utilizing it. Current LLM-based approaches leverage past experiences using a full history of observations, summarization or retrieval augmentation. However, these unstructured memory representations do not facilitate the reasoning and planning essential for complex decision-making. In our study, we introduce AriGraph, a novel method wherein the agent constructs a memory graph that integrates semantic and episodic memories while exploring the environment. This graph structure facilitates efficient associative retrieval of interconnected concepts, relevant to the agent's current state and goals, thus serving as an effective environmental model that enhances the agent's exploratory and planning capabilities. We demonstrate that our Ariadne LLM agent, equipped with this proposed memory architecture augmented with planning and decision-making, effectively handles complex tasks on a zero-shot basis in the TextWorld environment. Our approach markedly outperforms established methods such as full-history, summarization, and Retrieval-Augmented Generation in various tasks, including the cooking challenge from the First TextWorld Problems competition and novel tasks like house cleaning and puzzle Treasure Hunting.
- Abstract(参考訳): 生成AIの進歩は、自律エージェントの開発におけるLarge Language Models(LLM)の潜在的な応用を拡大した。
真の自律を達成するには、環境との相互作用から得られた知識を蓄積し、更新し、効果的に活用する必要がある。
現在のLCMベースのアプローチは、観測、要約、または検索拡張の完全な履歴を利用して過去の経験を活用する。
しかし、これらの非構造化メモリ表現は、複雑な意思決定に不可欠な推論や計画を促進するものではない。
本研究では,環境を探索しながらセマンティックメモリとエピソードメモリを統合したメモリグラフを構築する新しい手法であるAriGraphを紹介する。
このグラフ構造は、エージェントの現在の状態と目標に関連する相互接続された概念の効率的な連想的検索を促進し、エージェントの探索と計画能力を高める効果的な環境モデルとして機能する。
提案するメモリアーキテクチャと計画と意思決定を統合したAriadne LLMエージェントが,TextWorld環境において,複雑なタスクをゼロショットベースで効果的に処理できることを実証した。
提案手法は,第1回テキストワールドコンペティションの調理課題や,家の清掃やパズルの宝探しといった新しいタスクなど,多種多様なタスクにおいて,フルヒストリーや要約,検索生成といった手法よりも優れていた。
関連論文リスト
- LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - A Survey on the Memory Mechanism of Large Language Model based Agents [66.4963345269611]
大規模言語モデル(LLM)に基づくエージェントは、最近、研究や産業コミュニティから多くの注目を集めている。
LLMベースのエージェントは、現実の問題を解決する基礎となる自己進化能力に特徴付けられる。
エージェント-環境相互作用をサポートする重要なコンポーネントは、エージェントのメモリである。
論文 参考訳(メタデータ) (2024-04-21T01:49:46Z) - Fusing Domain-Specific Content from Large Language Models into Knowledge Graphs for Enhanced Zero Shot Object State Classification [0.8232137862012223]
本研究では,Large Language Models (LLMs) のドメイン固有情報の生成と提供における可能性について検討する。
これを実現するために、LLMは知識グラフと事前訓練されたセマンティックベクターを利用するパイプラインに統合される。
その結果,LLMをベースとした組込みと汎用的な事前学習型組込みを組み合わせることで,大幅な性能向上が期待できることがわかった。
論文 参考訳(メタデータ) (2024-03-18T18:08:44Z) - In-Memory Learning: A Declarative Learning Framework for Large Language
Models [56.62616975119192]
本研究では,人間ラベルデータに頼らずにエージェントが環境に整合できる新しい学習フレームワークを提案する。
このプロセス全体がメモリコンポーネント内で変換され、自然言語で実装される。
フレームワークの有効性を実証し、この問題に対する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-05T08:25:11Z) - A Study on the Implementation of Generative AI Services Using an
Enterprise Data-Based LLM Application Architecture [0.0]
本研究では,Large Language Models (LLM) アプリケーションアーキテクチャを用いて生成AIサービスを実装する手法を提案する。
この研究は、不十分なデータの問題を軽減するための戦略を練り上げ、カスタマイズされたソリューションを提供している。
この研究の重要な貢献は、検索型拡張世代(RAG)モデルの開発である。
論文 参考訳(メタデータ) (2023-09-03T07:03:17Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
本稿では,最新の生成型大規模言語モデルの可能性を活用する,革新的な知識グラフ生成手法を提案する。
このアプローチは、新しい反復的なゼロショットと外部知識に依存しない戦略を含むパイプラインで伝達される。
我々は、我々の提案がスケーラブルで多目的な知識グラフ構築に適したソリューションであり、異なる新しい文脈に適用できると主張している。
論文 参考訳(メタデータ) (2023-07-03T16:01:45Z) - ArK: Augmented Reality with Knowledge Interactive Emergent Ability [115.72679420999535]
基礎モデルから新しいドメインへの知識記憶の伝達を学習する無限エージェントを開発する。
私たちのアプローチの核心は、Augmented Reality with Knowledge Inference Interaction (ArK)と呼ばれる新しいメカニズムである。
我々のArKアプローチは,大規模な基礎モデルと組み合わせることで,生成された2D/3Dシーンの品質を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-05-01T17:57:01Z) - Transferring Procedural Knowledge across Commonsense Tasks [17.929737518694616]
本稿では,AIモデルによる手続き的知識を新しい物語課題に透過的に伝達する能力について検討する。
我々は、最先端のモデリングアーキテクチャ、トレーニングレシスタンス、拡張戦略を統合する包括的なフレームワークであるLEAPを設計する。
ドメイン内および外部タスクによる我々の実験は、異なるアーキテクチャの相互作用、トレーニング体制、拡張戦略に関する洞察を明らかにします。
論文 参考訳(メタデータ) (2023-04-26T23:24:50Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Advances in Inference and Representation for Simultaneous Localization
and Mapping [8.721760004258352]
同時ローカライゼーションとマッピング(SLAM)は,移動ロボットの基本機能であり,計画,ナビゲーション,制御といったコア機能をサポートする。
本稿では、SLAMにおける最近の進歩について、SLAMシステムで使用される環境モデルの表現能力の向上(表現)と、これらのモデルをデータ(参照)から推定するアルゴリズムの性能に焦点をあてる。
論文 参考訳(メタデータ) (2021-03-08T19:53:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。