論文の概要: Challenges for Real-Time Toxicity Detection in Online Games
- arxiv url: http://arxiv.org/abs/2407.04383v1
- Date: Fri, 5 Jul 2024 09:38:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 13:50:07.572365
- Title: Challenges for Real-Time Toxicity Detection in Online Games
- Title(参考訳): オンラインゲームにおけるリアルタイム毒性検出の課題
- Authors: Lynnette Hui Xian Ng, Adrian Xuan Wei Lim, Michael Miller Yoder,
- Abstract要約: 有害な行為や悪意のあるプレイヤーは経験を台無しにし、プレイヤーベースを減らし、ゲームやスタジオの成功を損なう可能性がある。
本稿では,テキスト,音声および画像処理問題,行動毒性の観点から,有害なコンテンツ検出に直面する課題について概説する。
- 参考スコア(独自算出の注目度): 1.2289361708127877
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Online multiplayer games like League of Legends, Counter Strike, and Skribbl.io create experiences through community interactions. Providing players with the ability to interact with each other through multiple modes also opens a Pandora box. Toxic behaviour and malicious players can ruin the experience, reduce the player base and potentially harming the success of the game and the studio. This article will give a brief overview of the challenges faced in toxic content detection in terms of text, audio and image processing problems, and behavioural toxicity. It also discusses the current practices in company-directed and user-directed content detection and discuss the values and limitations of automated content detection in the age of artificial intelligence.
- Abstract(参考訳): League of Legends、Counter Strike、Skribbl.ioのようなオンラインマルチプレイヤーゲームは、コミュニティの交流を通じて体験を生み出す。
複数のモードで相互に対話する能力を持つプレイヤーを提供することもPandoraボックスを開く。
有害な行為や悪意のあるプレイヤーは経験を台無しにし、プレイヤーベースを減らし、ゲームやスタジオの成功を損なう可能性がある。
本稿では,テキスト,音声および画像処理問題,行動毒性の観点から,有害なコンテンツ検出に直面する課題について概説する。
また、企業指向およびユーザ指向のコンテンツ検出における現在の実践についても論じ、人工知能時代における自動コンテンツ検出の価値と限界について論じる。
関連論文リスト
- Online Moderation in Competitive Action Games: How Intervention Affects Player Behaviors [40.395860809162265]
本研究は,オンラインゲームにおけるプレイヤ行動に対するモデレーションの影響について,未解明領域について考察する。
我々は,実世界の産業規模のモデレーションシステムにおけるモデレーションの影響を調べるために,準実験設計と因果推論技術を用いている。
本研究は, 破壊行動の抑制と, 破壊的プレイヤーの参加を阻害する2つの影響の緩和について明らかにした。
論文 参考訳(メタデータ) (2024-11-01T22:01:25Z) - Uncovering the Viral Nature of Toxicity in Competitive Online Video Games [0.4681661603096334]
フリー・ツー・プレイのアクションゲーム『Call of Duty: Warzone』のプロプライエタリなデータを分析した。
選手のチームメイトが有毒なスピーチを行う確率は、平均的な選手が有毒なスピーチを行う確率の26.1倍から30.3倍になる。
論文 参考訳(メタデータ) (2024-10-01T18:07:06Z) - Comprehensive Assessment of Toxicity in ChatGPT [49.71090497696024]
本研究は,ChatGPTの毒性を指導調整データセットを用いて評価する。
創作作業のプロンプトは 有害な反応を 引き起こす確率が 2倍になる
初期の研究で設計された、故意に有害なプロンプトは、もはや有害な反応を生じさせない。
論文 参考訳(メタデータ) (2023-11-03T14:37:53Z) - Towards Detecting Contextual Real-Time Toxicity for In-Game Chat [5.371337604556311]
ToxBusterはスケーラブルなモデルで、チャット履歴とメタデータを含むチャットの行に対して、リアルタイムに有害なコンテンツを確実に検出する。
ToxBusterは、Rainbow Six Siege、For Honor、DOTA 2などの人気マルチプレイヤーゲームにおいて、従来の毒性モデルよりも一貫して優れています。
論文 参考訳(メタデータ) (2023-10-20T00:29:57Z) - An Image is Worth a Thousand Toxic Words: A Metamorphic Testing
Framework for Content Moderation Software [64.367830425115]
ソーシャルメディアプラットフォームは、ヘイトスピーチ、悪意のある広告、ポルノなど、有害なコンテンツを拡散するためにますます悪用されている。
コンテンツモデレーション手法の開発と展開に多大な努力を払っているにもかかわらず、悪意のあるユーザは、テキストを画像に埋め込むことでモデレーションを回避することができる。
コンテンツモデレーションソフトウェアのためのメタモルフィックテストフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-18T20:33:06Z) - ToxBuster: In-game Chat Toxicity Buster with BERT [2.764897610820181]
ToxBusterは、Rainbow Six SiegeとFor Honorの194万行のゲームチャットの比較的大規模なデータセットに基づいてトレーニングされた、シンプルでスケーラブルなモデルである。
既存の最先端と比較して、ToxBusterの精度は82.95%(+7)、リコール率は83.56%(+57)である。
論文 参考訳(メタデータ) (2023-05-21T18:53:26Z) - Analyzing Norm Violations in Live-Stream Chat [49.120561596550395]
本研究は,ライブストリーミングプラットフォーム上での会話における規範違反を検出することを目的とした,最初のNLP研究である。
ライブストリームチャットにおける標準違反カテゴリを定義し、Twitchから4,583のコメントを注釈付けします。
以上の結果から,適切なコンテキスト情報がモデレーション性能を35%向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-05-18T05:58:27Z) - In-game Toxic Language Detection: Shared Task and Attention Residuals [1.9218741065333018]
本稿では,ゲーム内チャットデータを用いたゲーム内有害言語共有タスクの確立について述べる。
さらに,ゲーム内チャットから有害な言語トークンタグ付け(スロットフィリング)のためのモデル/フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-11T04:33:45Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
チームベースのマルチプレイヤーゲームにおいて,協調動作を検出するシステムを提案する。
提案手法は,ゲーム内行動パターンと組み合わせたプレイヤーの社会的関係を解析する。
次に,非教師なし学習手法であるアイソレーションフォレストによる検出を自動化する。
論文 参考訳(メタデータ) (2022-03-10T02:37:39Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
本研究は,テキストベースのコンピュータゲームにおいて,最先端の性能を発揮できる探索・模倣学習型エージェントを提案する。
テキストベースのコンピュータゲームは、自然言語でプレイヤーの世界を記述し、プレイヤーがテキストを使ってゲームと対話することを期待する。
これらのゲームは、言語理解、問題解決、および人工エージェントによる言語生成のためのテストベッドと見なすことができるため、興味がある。
論文 参考訳(メタデータ) (2020-01-24T03:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。