Connecting the Hamiltonian structure to the QAOA performance and energy landscape
- URL: http://arxiv.org/abs/2407.04435v1
- Date: Fri, 5 Jul 2024 11:32:46 GMT
- Title: Connecting the Hamiltonian structure to the QAOA performance and energy landscape
- Authors: Daniel Müssig, Markus Wappler, Steve Lenk, Jörg Lässig,
- Abstract summary: Quantum Alternating Operator Ansatz (QAOA) is effective for solving Quadratic Unconstrained Binary Optimization problems.
This study emphasizes the algorithm's robustness and potential for optimization tasks on near-term quantum devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantum computing holds promise for outperforming classical computing in specialized applications such as optimization. With current Noisy Intermediate Scale Quantum (NISQ) devices, only variational quantum algorithms like the Quantum Alternating Operator Ansatz (QAOA) can be practically run. QAOA is effective for solving Quadratic Unconstrained Binary Optimization (QUBO) problems by approximating Quantum Annealing via Trotterization. Successful implementation on NISQ devices requires shallow circuits, influenced by the number of variables and the sparsity of the augmented interaction matrix. This paper investigates the necessary sparsity levels for augmented interaction matrices to ensure solvability with QAOA. By analyzing the Max-Cut problem with varying sparsity, we provide insights into how the Hamiltonian density affects the QAOA performance. Our findings highlight that, while denser matrices complicate the energy landscape, the performance of QAOA remains largely unaffected by sparsity variations. This study emphasizes the algorithm's robustness and potential for optimization tasks on near-term quantum devices, suggesting avenues for future research in enhancing QAOA for practical applications.
Related papers
- Approximating under the Influence of Quantum Noise and Compute Power [3.0302054726041017]
The quantum approximate optimisation algorithm (QAOA) is at the core of many scenarios that aim to combine the power of quantum computers and classical high-performance computing appliances for optimisation.
We study factors that affect solution quality and temporal behaviour of four QAOA variants using comprehensive density-matrix-based simulations.
Our results, accompanied by a comprehensive reproduction package, show strong differences between QAOA variants that can be pinpointed to narrow and specific effects.
arXiv Detail & Related papers (2024-08-05T07:48:49Z) - Quantum Approximate Optimization: A Computational Intelligence Perspective [1.756184965281354]
We introduce quantum computing and variational quantum algorithms (VQAs)
We explain Farhi et al.'s quantum approximate optimization algorithm (Farhi's QAOA)
We discuss connections of QAOA to relevant domains, such as computational learning theory and genetic algorithms.
arXiv Detail & Related papers (2024-07-09T19:40:23Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2024-02-19T12:53:52Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Quantum Approximate Optimization Algorithm applied to the binary
perceptron [0.46664938579243564]
We apply digitized Quantum Annealing (QA) and Quantum Approximate Optimization Algorithm (QAOA) to a paradigmatic task of supervised learning in artificial neural networks.
We provide evidence for the existence of optimal smooth solutions for the QAOA parameters, which are transferable among typical instances of the same problem.
We prove numerically an enhanced performance of QAOA over traditional QA.
arXiv Detail & Related papers (2021-12-19T18:33:22Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.