A Didactic Journey from Statistical Physics to Thermodynamics
- URL: http://arxiv.org/abs/2407.04633v1
- Date: Fri, 5 Jul 2024 16:43:14 GMT
- Title: A Didactic Journey from Statistical Physics to Thermodynamics
- Authors: Mario Graml, Michael Riedl,
- Abstract summary: This paper offers a pedestrian guide from the fundamental properties of entropy to the axioms of thermodynamics.
It also dismantles flawed concepts, such as assigning physical meaning to Lagrange multipliers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper offers a pedestrian guide from the fundamental properties of entropy to the axioms of thermodynamics, which are a consequence of the axiom of statistical physics. It also dismantles flawed concepts, such as assigning physical meaning to Lagrange multipliers and numerous others. This work also provides a comprehensive understanding of the Legendre transform via geometrical, mathematical and physical insights, as well as its connection to the experimental setup. The central result of this paper is the comprehensive formalisation of key concepts, including ensembles, variable dependencies, potentials and natural variables. Furthermore, the framework of thermodynamics, the state function and the Euler inequality are rigorously proven from the axiom of statistical physics.
Related papers
- Quantum thermodynamics as a gauge theory [0.0]
A gauge theory for quantum thermodynamics was introduced, defining gauge invariant work and heat.
We extend that theory in two significant ways, incorporating energy spectrum degeneracies, which were previously overlooked.
This results in a complete framework for quantum thermodynamics grounded in the principle of gauge invariance.
arXiv Detail & Related papers (2024-09-12T00:46:48Z) - Quantum Thermodynamic Integrability for Canonical and non-Canonical Statistics [0.0]
We extend the Carath'eodory principle of the Second Law to quantum thermodynamics with energy levels depending on macroscopic variables.
This extension introduces the concept of Quantum Thermodynamic Integrability (QTI), offering an alternative foundation for statistical mechanics.
arXiv Detail & Related papers (2024-07-11T09:50:39Z) - Thermodynamics-Consistent Graph Neural Networks [50.0791489606211]
We propose excess Gibbs free energy graph neural networks (GE-GNNs) for predicting composition-dependent activity coefficients of binary mixtures.
The GE-GNN architecture ensures thermodynamic consistency by predicting the molar excess Gibbs free energy.
We demonstrate high accuracy and thermodynamic consistency of the activity coefficient predictions.
arXiv Detail & Related papers (2024-07-08T06:58:56Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - The problem of engines in statistical physics [62.997667081978825]
Engines are open systems that can generate work cyclically, at the expense of an external disequilibrium.
Recent advances in the theory of open quantum systems point to a more realistic description of autonomous engines.
We show how the external loading force and the thermal noise may be incorporated into the relevant equations of motion.
arXiv Detail & Related papers (2021-08-17T03:59:09Z) - The information-theoretic foundation of thermodynamic work extraction [0.0]
I show that if it is possible to extract work deterministically from a physical system prepared in any one of a set of states, then those states must be distinguishable from one another.
This result is formulated independently of scale and of particular dynamical laws.
It also provides a novel connection between thermodynamics and information theory, established via the law of conservation of energy.
arXiv Detail & Related papers (2020-09-09T21:58:03Z) - Entropy, Divergence, and Majorization in Classical and Quantum
Thermodynamics [0.0]
It has been revealed that there is rich information-theoretic structure in thermodynamics of out-of-equilibrium systems in both the classical and quantum regimes.
Main purpose of this book is to clarify how information theory works behind thermodynamics and to shed modern light on it.
arXiv Detail & Related papers (2020-07-20T09:50:27Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z) - Tangible phenomenological thermodynamics [4.87717454493713]
A new rigorous basis for thermodynamics is laid out in the main text and presented in full detail in the appendix.
All relevant concepts, such as work, heat, internal energy, heat reservoirs, reversibility, absolute temperature and entropy, are introduced on an abstract level.
arXiv Detail & Related papers (2020-02-20T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.