論文の概要: RPN: Reconciled Polynomial Network Towards Unifying PGMs, Kernel SVMs, MLP and KAN
- arxiv url: http://arxiv.org/abs/2407.04819v1
- Date: Fri, 5 Jul 2024 19:00:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 22:26:54.678073
- Title: RPN: Reconciled Polynomial Network Towards Unifying PGMs, Kernel SVMs, MLP and KAN
- Title(参考訳): RPN: PGM, Kernel SVM, MLP, Kanの統一に向けた再統合された多項式ネットワーク
- Authors: Jiawei Zhang,
- Abstract要約: 深層関数学習のためのReconciled Polynomial Network (RPN) という新しいディープモデルを導入する。
RPNは非常に一般的なアーキテクチャを持ち、様々な複雑さ、能力、完全性のレベルを持つモデルを構築するのに使用できる。
RPNは、異なるベースモデルをひとつの標準表現に統一するバックボーンとしても機能する。
- 参考スコア(独自算出の注目度): 8.168523242105763
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we will introduce a novel deep model named Reconciled Polynomial Network (RPN) for deep function learning. RPN has a very general architecture and can be used to build models with various complexities, capacities, and levels of completeness, which all contribute to the correctness of these models. As indicated in the subtitle, RPN can also serve as the backbone to unify different base models into one canonical representation. This includes non-deep models, like probabilistic graphical models (PGMs) - such as Bayesian network and Markov network - and kernel support vector machines (kernel SVMs), as well as deep models like the classic multi-layer perceptron (MLP) and the recent Kolmogorov-Arnold network (KAN). Technically, RPN proposes to disentangle the underlying function to be inferred into the inner product of a data expansion function and a parameter reconciliation function. Together with the remainder function, RPN accurately approximates the underlying functions that governs data distributions. The data expansion functions in RPN project data vectors from the input space to a high-dimensional intermediate space, specified by the expansion functions in definition. Meanwhile, RPN also introduces the parameter reconciliation functions to fabricate a small number of parameters into a higher-order parameter matrix to address the ``curse of dimensionality'' problem caused by the data expansions. Moreover, the remainder functions provide RPN with additional complementary information to reduce potential approximation errors. We conducted extensive empirical experiments on numerous benchmark datasets across multiple modalities, including continuous function datasets, discrete vision and language datasets, and classic tabular datasets, to investigate the effectiveness of RPN.
- Abstract(参考訳): 本稿では,深層関数学習のためのReconciled Polynomial Network (RPN) という新しいディープモデルを提案する。
RPNは非常に一般的なアーキテクチャを持ち、様々な複雑さ、能力、完全性のレベルを持つモデルを構築するのに使用できる。
サブタイトルで示されるように、RPNは異なるベースモデルを1つの標準表現に統一するバックボーンとしても機能する。
これには、ベイジアンネットワークやマルコフネットワークのような確率的グラフィカルモデル(PGM)やカーネルサポートベクターマシン(カーネルSVM)のような非ディープモデルや、古典的なマルチレイヤーパーセプトロン(MLP)や最近のコルモゴロフ・アルノルドネットワーク(KAN)のようなディープモデルが含まれる。
技術的には、RPNは、データ拡張関数とパラメータ調整関数の内部積に推論される基礎関数をアンタングル化することを提案している。
残りの関数とともに、RPNはデータ分布を管理する基礎関数を正確に近似する。
データ拡張関数は、入力空間から高次元中間空間へのRPNプロジェクトデータベクトルにおいて、定義中の拡張関数によって指定された関数である。
一方、RPNでは、少数のパラメータを高階のパラメータ行列に合成するパラメータ調整関数を導入し、データ展開によって生じる「次元の正確な」問題に対処する。
さらに、残りの関数は、潜在的な近似誤差を低減するために追加の補完情報を提供する。
我々は,連続関数データセット,離散視覚および言語データセット,古典的な表形式のデータセットなど,複数のモードにわたる多数のベンチマークデータセットに対する広範な実験を行い,RPNの有効性について検討した。
関連論文リスト
- Attention Beats Linear for Fast Implicit Neural Representation Generation [13.203243059083533]
本稿では,局所的注意層(LAL)と大域的表現ベクトルからなる注意型局所INR(ANR)を提案する。
インスタンス固有の表現とインスタンスに依存しないANRパラメータにより、ターゲット信号は連続関数として十分に再構成される。
論文 参考訳(メタデータ) (2024-07-22T03:52:18Z) - Approximation of RKHS Functionals by Neural Networks [30.42446856477086]
ニューラルネットワークを用いたHilbert空間(RKHS)を再現するカーネル上の関数の近似について検討する。
逆多重四元数、ガウス、ソボレフのカーネルによって誘導される場合の明示的な誤差境界を導出する。
ニューラルネットワークが回帰マップを正確に近似できることを示すため,機能回帰に本研究の成果を適用した。
論文 参考訳(メタデータ) (2024-03-18T18:58:23Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Do deep neural networks have an inbuilt Occam's razor? [1.1470070927586016]
構造データとOccam's razor-likeインダクティブバイアスが組み合わさった単純な関数に対する構造データは、複雑さを伴う関数の指数的成長に反することを示す。
この分析により、構造データと(コルモゴロフ)単純関数に対するOccam's razor-likeインダクティブバイアスが組み合わさって、複雑さを伴う関数の指数的成長に対抗できるほど強いことがDNNの成功の鍵であることが明らかになった。
論文 参考訳(メタデータ) (2023-04-13T16:58:21Z) - Provable Data Subset Selection For Efficient Neural Network Training [73.34254513162898]
本稿では,任意の放射基底関数ネットワーク上での入力データの損失を近似する,emphRBFNNのコアセットを構成するアルゴリズムについて紹介する。
次に、一般的なネットワークアーキテクチャやデータセット上で、関数近似とデータセットサブセットの選択に関する経験的評価を行う。
論文 参考訳(メタデータ) (2023-03-09T10:08:34Z) - Efficient Parametric Approximations of Neural Network Function Space
Distance [6.117371161379209]
モデルパラメータとトレーニングデータの重要な特性をコンパクトに要約して、データセット全体を保存または/または反復することなく後で使用できるようにすることが、しばしば有用である。
我々は,FSD(Function Space Distance)をトレーニングセット上で推定することを検討する。
本稿では、線形化活性化TRick (LAFTR) を提案し、ReLUニューラルネットワークに対するFSDの効率的な近似を導出する。
論文 参考訳(メタデータ) (2023-02-07T15:09:23Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
本稿では,近似関数の能力を大幅に向上させるVersatile Neural Processs (VNP)を提案する。
具体的には、より少ない情報的コンテキストトークンを生成するボトルネックエンコーダを導入し、高い計算コストを軽減した。
提案したVNPが1D, 2D, 3D信号を含む様々なタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-01-21T04:08:46Z) - Deep Neural Network Classifier for Multi-dimensional Functional Data [4.340040784481499]
我々は,多次元関数型データを分類するFDNN(Functional Deep Neural Network)と呼ばれる新しい手法を提案する。
具体的には、将来のデータ関数のクラスラベルを予測するために使用されるトレーニングデータの原則コンポーネントに基づいて、ディープニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2022-05-17T19:22:48Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
グラフニューラルネットワーク(GNN)は、従来の畳み込みを非ユークリッドデータでの学習に拡張することで、目覚ましい成功を収めた。
本稿では,周辺情報を利用した新しいパラメトリックアクティベーション機能であるグラフ適応整流線形ユニット(GRELU)を提案する。
我々は,GNNのバックボーンと様々な下流タスクによって,プラグアンドプレイGRELU法が効率的かつ効果的であることを示す包括的実験を行った。
論文 参考訳(メタデータ) (2022-02-13T10:54:59Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Deep Parametric Continuous Convolutional Neural Networks [92.87547731907176]
Parametric Continuous Convolutionは、非グリッド構造化データ上で動作する、新たな学習可能な演算子である。
室内および屋外シーンの点雲セグメンテーションにおける最先端技術よりも顕著な改善が見られた。
論文 参考訳(メタデータ) (2021-01-17T18:28:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。