Improving Knowledge Distillation in Transfer Learning with Layer-wise Learning Rates
- URL: http://arxiv.org/abs/2407.04871v1
- Date: Fri, 5 Jul 2024 21:35:17 GMT
- Title: Improving Knowledge Distillation in Transfer Learning with Layer-wise Learning Rates
- Authors: Shirley Kokane, Mostofa Rafid Uddin, Min Xu,
- Abstract summary: We propose a layer-wise learning scheme that adjusts learning parameters per layer as a function of the differences in the Jacobian/Attention/Hessian of the output activations.
We received improved learning performance and stability against a wide range of datasets.
- Score: 6.783548275689542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transfer learning methods start performing poorly when the complexity of the learning task is increased. Most of these methods calculate the cumulative differences of all the matched features and then use them to back-propagate that loss through all the layers. Contrary to these methods, in this work, we propose a novel layer-wise learning scheme that adjusts learning parameters per layer as a function of the differences in the Jacobian/Attention/Hessian of the output activations w.r.t. the network parameters. We applied this novel scheme for attention map-based and derivative-based (first and second order) transfer learning methods. We received improved learning performance and stability against a wide range of datasets. From extensive experimental evaluation, we observed that the performance boost achieved by our method becomes more significant with the increasing difficulty of the learning task.
Related papers
- Reducing catastrophic forgetting of incremental learning in the absence of rehearsal memory with task-specific token [0.6144680854063939]
Deep learning models display catastrophic forgetting when learning new data continuously.
We present a novel method that preserves previous knowledge without storing previous data.
This method is inspired by the architecture of a vision transformer and employs a unique token capable of encapsulating the compressed knowledge of each task.
arXiv Detail & Related papers (2024-11-06T16:13:50Z) - Normalization and effective learning rates in reinforcement learning [52.59508428613934]
Normalization layers have recently experienced a renaissance in the deep reinforcement learning and continual learning literature.
We show that normalization brings with it a subtle but important side effect: an equivalence between growth in the norm of the network parameters and decay in the effective learning rate.
We propose to make the learning rate schedule explicit with a simple re- parameterization which we call Normalize-and-Project.
arXiv Detail & Related papers (2024-07-01T20:58:01Z) - Contrastive-Adversarial and Diffusion: Exploring pre-training and fine-tuning strategies for sulcal identification [3.0398616939692777]
Techniques like adversarial learning, contrastive learning, diffusion denoising learning, and ordinary reconstruction learning have become standard.
The study aims to elucidate the advantages of pre-training techniques and fine-tuning strategies to enhance the learning process of neural networks.
arXiv Detail & Related papers (2024-05-29T15:44:51Z) - From Pretext to Purpose: Batch-Adaptive Self-Supervised Learning [32.18543787821028]
This paper proposes an adaptive technique of batch fusion for self-supervised contrastive learning.
It achieves state-of-the-art performance under equitable comparisons.
We suggest that the proposed method may contribute to the advancement of data-driven self-supervised learning research.
arXiv Detail & Related papers (2023-11-16T15:47:49Z) - Weighted Ensemble Self-Supervised Learning [67.24482854208783]
Ensembling has proven to be a powerful technique for boosting model performance.
We develop a framework that permits data-dependent weighted cross-entropy losses.
Our method outperforms both in multiple evaluation metrics on ImageNet-1K.
arXiv Detail & Related papers (2022-11-18T02:00:17Z) - Relational Experience Replay: Continual Learning by Adaptively Tuning
Task-wise Relationship [54.73817402934303]
We propose Experience Continual Replay (ERR), a bi-level learning framework to adaptively tune task-wise to achieve a better stability plasticity' tradeoff.
ERR can consistently improve the performance of all baselines and surpass current state-of-the-art methods.
arXiv Detail & Related papers (2021-12-31T12:05:22Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Disentangling Adaptive Gradient Methods from Learning Rates [65.0397050979662]
We take a deeper look at how adaptive gradient methods interact with the learning rate schedule.
We introduce a "grafting" experiment which decouples an update's magnitude from its direction.
We present some empirical and theoretical retrospectives on the generalization of adaptive gradient methods.
arXiv Detail & Related papers (2020-02-26T21:42:49Z) - Inter- and Intra-domain Knowledge Transfer for Related Tasks in Deep
Character Recognition [2.320417845168326]
Pre-training a deep neural network on the ImageNet dataset is a common practice for training deep learning models.
The technique of pre-training on one task and then retraining on a new one is called transfer learning.
In this paper we analyse the effectiveness of using deep transfer learning for character recognition tasks.
arXiv Detail & Related papers (2020-01-02T14:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.