ReCAP: Recursive Cross Attention Network for Pseudo-Label Generation in Robotic Surgical Skill Assessment
- URL: http://arxiv.org/abs/2407.05180v3
- Date: Thu, 24 Oct 2024 11:18:24 GMT
- Title: ReCAP: Recursive Cross Attention Network for Pseudo-Label Generation in Robotic Surgical Skill Assessment
- Authors: Julien Quarez, Marc Modat, Sebastien Ourselin, Jonathan Shapey, Alejandro Granados,
- Abstract summary: In surgical skill assessment, the Objective Assessments of Technical Skills (OSATS) and Global Rating Scale (GRS) are well-established tools for evaluating surgeons during training.
Recent research has focused on regressing GRS scores from kinematic data, video, or their combination.
We argue that regressing GRS alone is limiting, as it aggregates OSATS scores and overlooks clinically meaningful variations during a surgical trial.
- Score: 40.09498356923132
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In surgical skill assessment, the Objective Structured Assessments of Technical Skills (OSATS) and Global Rating Scale (GRS) are well-established tools for evaluating surgeons during training. These metrics, along with performance feedback, help surgeons improve and reach practice standards. Recent research on the open-source JIGSAWS dataset, which includes both GRS and OSATS labels, has focused on regressing GRS scores from kinematic data, video, or their combination. However, we argue that regressing GRS alone is limiting, as it aggregates OSATS scores and overlooks clinically meaningful variations during a surgical trial. To address this, we developed a recurrent transformer model that tracks a surgeon's performance throughout a session by mapping hidden states to six OSATS, derived from kinematic data, using a clinically motivated objective function. These OSATS scores are averaged to predict GRS, allowing us to compare our model's performance against state-of-the-art (SOTA) methods. We report Spearman's Correlation Coefficients (SCC) demonstrating that our model outperforms SOTA using kinematic data (SCC 0.83-0.88), and matches performance with video-based models. Our model also surpasses SOTA in most tasks for average OSATS predictions (SCC 0.46-0.70) and specific OSATS (SCC 0.56-0.95). The generation of pseudo-labels at the segment level translates quantitative predictions into qualitative feedback, vital for automated surgical skill assessment pipelines. A senior surgeon validated our model's outputs, agreeing with 77% of the weakly-supervised predictions (p=0.006).
Related papers
- Handling Geometric Domain Shifts in Semantic Segmentation of Surgical RGB and Hyperspectral Images [67.66644395272075]
We present first analysis of state-of-the-art semantic segmentation models when faced with geometric out-of-distribution data.
We propose an augmentation technique called "Organ Transplantation" to enhance generalizability.
Our augmentation technique improves SOA model performance by up to 67 % for RGB data and 90 % for HSI data, achieving performance at the level of in-distribution performance on real OOD test data.
arXiv Detail & Related papers (2024-08-27T19:13:15Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - ZEAL: Surgical Skill Assessment with Zero-shot Tool Inference Using Unified Foundation Model [0.07143413923310668]
This study introduces ZEAL (surgical skill assessment with Zero-shot surgical tool segmentation with a unifiEd foundAtion modeL)
ZEAL predicts segmentation masks, capturing essential features of both instruments and surroundings.
It produces a surgical skill score, offering an objective measure of proficiency.
arXiv Detail & Related papers (2024-07-03T01:20:56Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - Overcoming Pitfalls in Graph Contrastive Learning Evaluation: Toward
Comprehensive Benchmarks [60.82579717007963]
We introduce an enhanced evaluation framework designed to more accurately gauge the effectiveness, consistency, and overall capability of Graph Contrastive Learning (GCL) methods.
arXiv Detail & Related papers (2024-02-24T01:47:56Z) - Semi-supervised ViT knowledge distillation network with style transfer
normalization for colorectal liver metastases survival prediction [1.283897253352624]
We propose an end-to-end approach for automated prognosis prediction using histology slides stained with H&E and HPS.
We first employ a Generative Adversarial Network (GAN) for slide normalization to reduce staining variations and improve the overall quality of the images that are used as input to our prediction pipeline.
We exploit the extracted features for the metastatic nodules and surrounding tissue to train a prognosis model. In parallel, we train a vision Transformer (ViT) in a knowledge distillation framework to replicate and enhance the performance of the prognosis prediction.
arXiv Detail & Related papers (2023-11-17T03:32:11Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - MAPPING: Model Average with Post-processing for Stroke Lesion
Segmentation [57.336056469276585]
We present our stroke lesion segmentation model based on nnU-Net framework, and apply it to the Anatomical Tracings of Lesions After Stroke dataset.
Our method took the first place in the 2022 MICCAI ATLAS Challenge with an average Dice score of 0.6667, Lesion-wise F1 score of 0.5643, Simple Lesion Count score of 4.5367, and Volume Difference score of 8804.9102.
arXiv Detail & Related papers (2022-11-11T14:17:04Z) - Surgical Skill Assessment on In-Vivo Clinical Data via the Clearness of
Operating Field [18.643159726513133]
Surgical skill assessment is studied in this paper on a real clinical dataset.
The clearness of operating field (COF) is identified as a good proxy for overall surgical skills.
An objective and automated framework is proposed to predict surgical skills through the proxy of COF.
In experiments, the proposed method achieves 0.55 Spearman's correlation with the ground truth of overall technical skill.
arXiv Detail & Related papers (2020-08-27T07:12:16Z) - Temporal Segmentation of Surgical Sub-tasks through Deep Learning with
Multiple Data Sources [14.677001578868872]
We propose a unified surgical state estimation model based on the actions performed or events occurred as the task progresses.
We evaluate our model on the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) and a more complex dataset involving robotic intra-operative ultrasound (RIOUS) imaging.
Our model achieves a superior frame-wise state estimation accuracy up to 89.4%, which improves the state-of-the-art surgical state estimation models.
arXiv Detail & Related papers (2020-02-07T17:49:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.