A Generalized Transformer-based Radio Link Failure Prediction Framework in 5G RANs
- URL: http://arxiv.org/abs/2407.05197v1
- Date: Sat, 6 Jul 2024 21:57:23 GMT
- Title: A Generalized Transformer-based Radio Link Failure Prediction Framework in 5G RANs
- Authors: Kazi Hasan, Thomas Trappenberg, Israat Haque,
- Abstract summary: This paper proposes GenTrap, a novel RLF prediction framework that introduces a graph neural network (GNN)-based learnable weather effect aggregation module.
We evaluate GenTrap on two real-world datasets with 2.6 million data points and show that GenTrap offers a significantly higher F1-score (0.93 for rural and 0.79 for urban) compared to its counterparts.
- Score: 2.519319150166215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radio link failure (RLF) prediction system in Radio Access Networks (RANs) is critical for ensuring seamless communication and meeting the stringent requirements of high data rates, low latency, and improved reliability in 5G networks. However, weather conditions such as precipitation, humidity, temperature, and wind impact these communication links. Usually, historical radio link Key Performance Indicators (KPIs) and their surrounding weather station observations are utilized for building learning-based RLF prediction models. However, such models must be capable of learning the spatial weather context in a dynamic RAN and effectively encoding time series KPIs with the weather observation data. Existing works fail to incorporate both of these essential design aspects of the prediction models. This paper fills the gap by proposing GenTrap, a novel RLF prediction framework that introduces a graph neural network (GNN)-based learnable weather effect aggregation module and employs state-of-the-art time series transformer as the temporal feature extractor for radio link failure prediction. The proposed aggregation method of GenTrap can be integrated into any existing prediction model to achieve better performance and generalizability. We evaluate GenTrap on two real-world datasets (rural and urban) with 2.6 million KPI data points and show that GenTrap offers a significantly higher F1-score (0.93 for rural and 0.79 for urban) compared to its counterparts while possessing generalization capability.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Advancing Heatwave Forecasting via Distribution Informed-Graph Neural Networks (DI-GNNs): Integrating Extreme Value Theory with GNNs [3.1648929705158357]
Heatwaves, prolonged periods of extreme heat, have intensified in frequency and severity due to climate change.
accurate heatwave forecasting at weather scales (1--15 days) remains challenging due to the non-linear interactions between atmospheric drivers and the rarity of these extreme events.
This study introduces the Distribution-Informed Graph Neural Network (DI-GNN), a novel framework that integrates principles from Extreme Value Theory (EVT) into the graph neural network architecture.
arXiv Detail & Related papers (2024-11-20T17:45:03Z) - VECTOR: Velocity-Enhanced GRU Neural Network for Real-Time 3D UAV Trajectory Prediction [2.1825723033513165]
We propose a new trajectory prediction method using Gated Recurrent Units (GRUs) within sequence-based neural networks.
We employ both synthetic and real-world 3D UAV trajectory data, capturing a wide range of flight patterns, speeds, and agility.
The GRU-based models significantly outperform state-of-the-art RNN approaches, with a mean square error (MSE) as low as 2 x 10-8.
arXiv Detail & Related papers (2024-10-24T07:16:42Z) - Multi-modal graph neural networks for localized off-grid weather forecasting [3.890177521606208]
Weather forecast products from machine learning or numerical weather models are currently generated on a global regular grid.
In this work, we train a heterogeneous graph neural network (GNN) end-to-end to downscale gridded forecasts to off-grid locations of interest.
Our approach demonstrates how the gap between global large-scale weather models and locally accurate predictions can be bridged to inform localized decision-making.
arXiv Detail & Related papers (2024-10-16T18:25:43Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
We present FengWu, an advanced data-driven global medium-range weather forecast system based on Artificial Intelligence (AI)
FengWu is able to accurately reproduce the atmospheric dynamics and predict the future land and atmosphere states at 37 vertical levels on a 0.25deg latitude-longitude resolution.
The results suggest that FengWu can significantly improve the forecast skill and extend the skillful global medium-range weather forecast out to 10.75 days lead.
arXiv Detail & Related papers (2023-04-06T09:16:39Z) - DL-Corrector-Remapper: A grid-free bias-correction deep learning
methodology for data-driven high-resolution global weather forecasting [11.334341754942917]
We develop a methodology to correct, remap, and fine-tune gridded uniform forecasts of FourCastNet (FCN)
This is akin to bias correction and post-processing of numerical weather prediction (NWP)
We call this network the Deep-Learning-Corrector-Remapper (DLCR)
arXiv Detail & Related papers (2022-10-21T23:04:44Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - Variational Autoencoder Assisted Neural Network Likelihood RSRP
Prediction Model [2.881201648416745]
We study a generative model for RSRP prediction, exploiting MDT data and a digital twin (DT)
Our proposed model that uses real-world data demonstrates an accuracy improvement of about 20% or more compared with the empirical model.
arXiv Detail & Related papers (2022-06-27T17:27:35Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.