Variational Autoencoder Assisted Neural Network Likelihood RSRP
Prediction Model
- URL: http://arxiv.org/abs/2207.00166v1
- Date: Mon, 27 Jun 2022 17:27:35 GMT
- Title: Variational Autoencoder Assisted Neural Network Likelihood RSRP
Prediction Model
- Authors: Peizheng Li, Xiaoyang Wang, Robert Piechocki, Shipra Kapoor, Angela
Doufexi, Arjun Parekh
- Abstract summary: We study a generative model for RSRP prediction, exploiting MDT data and a digital twin (DT)
Our proposed model that uses real-world data demonstrates an accuracy improvement of about 20% or more compared with the empirical model.
- Score: 2.881201648416745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measuring customer experience on mobile data is of utmost importance for
global mobile operators. The reference signal received power (RSRP) is one of
the important indicators for current mobile network management, evaluation and
monitoring. Radio data gathered through the minimization of drive test (MDT), a
3GPP standard technique, is commonly used for radio network analysis.
Collecting MDT data in different geographical areas is inefficient and
constrained by the terrain conditions and user presence, hence is not an
adequate technique for dynamic radio environments. In this paper, we study a
generative model for RSRP prediction, exploiting MDT data and a digital twin
(DT), and propose a data-driven, two-tier neural network (NN) model. In the
first tier, environmental information related to user equipment (UE), base
stations (BS) and network key performance indicators (KPI) are extracted
through a variational autoencoder (VAE). The second tier is designed as a
likelihood model. Here, the environmental features and real MDT data features
are adopted, formulating an integrated training process. On validation, our
proposed model that uses real-world data demonstrates an accuracy improvement
of about 20% or more compared with the empirical model and about 10% when
compared with a fully connected prediction network.
Related papers
- Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - RadioGAT: A Joint Model-based and Data-driven Framework for Multi-band Radiomap Reconstruction via Graph Attention Networks [36.8227064106456]
Multi-band radiomap reconstruction (MB-RMR) is a key component in wireless communications for tasks such as spectrum management and network planning.
Traditional machine-learning-based MB-RMR methods, which rely heavily on simulated data, face significant deployment challenges.
This study presents RadioGAT, a novel framework based on Graph Attention Network (GAT) tailored for MB-RMR within a single area.
arXiv Detail & Related papers (2024-03-25T03:23:10Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
Most machine learning (ML) systems assume stationary and matching data distributions during training and deployment.
Data distributions often shift over time due to changes in environmental factors, sensor characteristics, and task-of-interest.
This paper presents theAdaptor-Reconfigurator (EAR) framework for efficient continual learning under domain shifts.
arXiv Detail & Related papers (2023-08-03T23:55:17Z) - MAP: A Model-agnostic Pretraining Framework for Click-through Rate
Prediction [39.48740397029264]
We propose a Model-agnostic pretraining (MAP) framework that applies feature corruption and recovery on multi-field categorical data.
We derive two practical algorithms: masked feature prediction (RFD) and replaced feature detection (RFD)
arXiv Detail & Related papers (2023-08-03T12:55:55Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Collaborative Learning with a Drone Orchestrator [79.75113006257872]
A swarm of intelligent wireless devices train a shared neural network model with the help of a drone.
The proposed framework achieves a significant speedup in training, leading to an average 24% and 87% saving in the drone hovering time.
arXiv Detail & Related papers (2023-03-03T23:46:25Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Wireless Sensing With Deep Spectrogram Network and Primitive Based
Autoregressive Hybrid Channel Model [20.670058030653458]
Human motion recognition (HMR) based on wireless sensing is a low-cost technique for scene understanding.
Current HMR systems adopt support vector machines (SVMs) and convolutional neural networks (CNNs) to classify radar signals.
This paper proposes a deep spectrogram network (DSN) by leveraging the residual mapping technique to enhance the HMR performance.
arXiv Detail & Related papers (2021-04-21T06:33:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.