Flood of Techniques and Drought of Theories: Emotion Mining in Disasters
- URL: http://arxiv.org/abs/2407.05219v3
- Date: Tue, 3 Sep 2024 02:10:16 GMT
- Title: Flood of Techniques and Drought of Theories: Emotion Mining in Disasters
- Authors: Soheil Shapouri, Saber Soleymani, Saed Rezayi,
- Abstract summary: Emotion mining has become a crucial tool for understanding human emotions during disasters.
This paper aims to summarize existing research on emotion mining within disaster contexts.
We aim to enhance the effectiveness and reliability of emotion mining methodologies.
- Score: 5.392688959066589
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Emotion mining has become a crucial tool for understanding human emotions during disasters, leveraging the extensive data generated on social media platforms. This paper aims to summarize existing research on emotion mining within disaster contexts, highlighting both significant discoveries and persistent issues. On the one hand, emotion mining techniques have achieved acceptable accuracy enabling applications such as rapid damage assessment and mental health surveillance. On the other hand, with many studies adopting data-driven approaches, several methodological issues remain. These include arbitrary emotion classification, ignoring biases inherent in data collection from social media, such as the overrepresentation of individuals from higher socioeconomic status on Twitter, and the lack of application of theoretical frameworks like cross-cultural comparisons. These problems can be summarized as a notable lack of theory-driven research and ignoring insights from social and behavioral sciences. This paper underscores the need for interdisciplinary collaboration between computer scientists and social scientists to develop more robust and theoretically grounded approaches in emotion mining. By addressing these gaps, we aim to enhance the effectiveness and reliability of emotion mining methodologies, ultimately contributing to improved disaster preparedness, response, and recovery. Keywords: emotion mining, sentiment analysis, natural disasters, psychology, technological disasters
Related papers
- Combining psychoanalysis and computer science: an empirical study of the relationship between emotions and the Lacanian discourses [0.0]
This research explores the interdisciplinary interaction between psychoanalysis and computer science.
In particular, this research aims to apply computer science methods to establish relationships between emotions and Lacanian discourses.
Although the main contribution of this paper is inherently theoretical (psychoanalytic), it can also facilitate major practical applications in the realm of interactive digital systems.
arXiv Detail & Related papers (2024-10-30T10:49:33Z) - Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
Stress and depression impact the engagement in daily tasks, highlighting the need to understand their interplay.
This survey is the first to simultaneously explore computational methods for analyzing stress, depression, and engagement.
arXiv Detail & Related papers (2024-03-09T11:16:09Z) - Unlocking the Emotional World of Visual Media: An Overview of the
Science, Research, and Impact of Understanding Emotion [24.920797480215242]
This article provides a comprehensive overview of the field of emotion analysis in visual media.
We discuss the psychological foundations of emotion and the computational principles that underpin the understanding of emotions from images and videos.
We contend that this represents a "Holy Grail" research problem in computing and delineate pivotal directions for future inquiry.
arXiv Detail & Related papers (2023-07-25T12:47:21Z) - BERT-Deep CNN: State-of-the-Art for Sentiment Analysis of COVID-19
Tweets [0.7850663096185592]
The COVID-19 pandemic is one of the current events being discussed on social media platforms.
In a pandemic situation, analyzing social media texts to uncover sentimental trends can be very helpful.
We intend to study society's perception of the COVID-19 pandemic through social media using state-of-the-art BERT and Deep CNN models.
arXiv Detail & Related papers (2022-11-04T14:35:56Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - Social media emotion macroscopes reflect emotional experiences in
society at large [0.12656629989060433]
Social media generate data on human behaviour at large scales and over long periods of time.
Recent research has shown weak correlations between social media emotions and affect questionnaires at the individual level.
No research has tested the validity of social media emotion macroscopes to track the temporal evolution of emotions at the level of a whole society.
arXiv Detail & Related papers (2021-07-28T09:40:42Z) - When a crisis strikes: Emotion analysis and detection during COVID-19 [96.03869351276478]
We present CovidEmo, 1K tweets labeled with emotions.
We examine how well large pre-trained language models generalize across domains and crises.
arXiv Detail & Related papers (2021-07-23T04:07:14Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
The consistency of a response to a given post at semantic-level and emotional-level is essential for a dialogue system to deliver human-like interactions.
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
arXiv Detail & Related papers (2020-11-15T01:55:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.