RQR3D: Reparametrizing the regression targets for BEV-based 3D object detection
- URL: http://arxiv.org/abs/2505.17732v1
- Date: Fri, 23 May 2025 10:52:34 GMT
- Title: RQR3D: Reparametrizing the regression targets for BEV-based 3D object detection
- Authors: Ozsel Kilinc, Cem Tarhan,
- Abstract summary: Bird's-eye view (BEV)-based perception approaches have emerged as superior alternatives to perspective-based solutions.<n>We propose Restricted Quadrilateral Representation to define 3D regression targets.<n>RQR3D regresses the smallest horizontal bounding box encapsulating the oriented box, along with the offsets between the corners of these two boxes.
- Score: 0.4604003661048266
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate, fast, and reliable 3D perception is essential for autonomous driving. Recently, bird's-eye view (BEV)-based perception approaches have emerged as superior alternatives to perspective-based solutions, offering enhanced spatial understanding and more natural outputs for planning. Existing BEV-based 3D object detection methods, typically adhering to angle-based representation, directly estimate the size and orientation of rotated bounding boxes. We observe that BEV-based 3D object detection is analogous to aerial oriented object detection, where angle-based methods are recognized for being affected by discontinuities in their loss functions. Drawing inspiration from this domain, we propose Restricted Quadrilateral Representation to define 3D regression targets. RQR3D regresses the smallest horizontal bounding box encapsulating the oriented box, along with the offsets between the corners of these two boxes, thereby transforming the oriented object detection problem into a keypoint regression task. RQR3D is compatible with any 3D object detection approach. We employ RQR3D within an anchor-free single-stage object detection method and introduce an objectness head to address class imbalance problem. Furthermore, we introduce a simplified radar fusion backbone that eliminates the need for voxel grouping and processes the BEV-mapped point cloud with standard 2D convolutions, rather than sparse convolutions. Extensive evaluations on the nuScenes dataset demonstrate that RQR3D achieves state-of-the-art performance in camera-radar 3D object detection, outperforming the previous best method by +4% in NDS and +2.4% in mAP, and significantly reducing the translation and orientation errors, which are crucial for safe autonomous driving. These consistent gains highlight the robustness, precision, and real-world readiness of our approach.
Related papers
- The Meeseeks Mesh: Spatially Consistent 3D Adversarial Objects for BEV Detector [37.74333887056029]
3D object detection is a critical component in autonomous driving systems.<n>In this paper, we investigate the vulnerability of 3D object detection models to 3D adversarial attacks.<n>We generate non-invasive 3D adversarial objects tailored for real-world attack scenarios.
arXiv Detail & Related papers (2025-05-28T15:49:54Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - OriCon3D: Effective 3D Object Detection using Orientation and Confidence [0.0]
We propose an advanced methodology for the detection of 3D objects from a single image.
We use a deep convolutional neural network-based 3D object weighted orientation regression paradigm.
Our approach significantly improves the accuracy of 3D object pose determination, surpassing baseline methodologies.
arXiv Detail & Related papers (2023-04-27T19:52:47Z) - OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object
Detection [51.153003057515754]
OPA-3D is a single-stage, end-to-end, Occlusion-Aware Pixel-Wise Aggregation network.
It jointly estimates dense scene depth with depth-bounding box residuals and object bounding boxes.
It outperforms state-of-the-art methods on the main Car category.
arXiv Detail & Related papers (2022-11-02T14:19:13Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - Delving into Localization Errors for Monocular 3D Object Detection [85.77319416168362]
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving.
In this work, we quantify the impact introduced by each sub-task and find the localization error' is the vital factor in restricting monocular 3D detection.
arXiv Detail & Related papers (2021-03-30T10:38:01Z) - MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty
Propagation [4.202461384355329]
We propose MonoRUn, a novel 3D object detection framework that learns dense correspondences and geometry in a self-supervised manner.
Our proposed approach outperforms current state-of-the-art methods on KITTI benchmark.
arXiv Detail & Related papers (2021-03-23T15:03:08Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.