Generating multi-scale NMC particles with radial grain architectures using spatial stochastics and GANs
- URL: http://arxiv.org/abs/2407.05333v2
- Date: Fri, 19 Jul 2024 08:44:39 GMT
- Title: Generating multi-scale NMC particles with radial grain architectures using spatial stochastics and GANs
- Authors: Lukas Fuchs, Orkun Furat, Donal P. Finegan, Jeffery Allen, Francois L. E. Usseglio-Viretta, Bertan Ozdogru, Peter J. Weddle, Kandler Smith, Volker Schmidt,
- Abstract summary: correlating morphology of cathode particles with electrode performance is challenging.
It is currently not feasible to image such a high number of particles with full granular detail to achieve representivity.
A stereological generative adversarial network (GAN)-based model fitting approach is presented that can generate representative 3D information from 2D data.
Once calibrated, this multi-scale model is able to rapidly generate virtual cathode particles that are statistically similar to experimental data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding structure-property relationships of Li-ion battery cathodes is crucial for optimizing rate-performance and cycle-life resilience. However, correlating the morphology of cathode particles, such as in NMC811, and their inner grain architecture with electrode performance is challenging, particularly, due to the significant length-scale difference between grain and particle sizes. Experimentally, it is currently not feasible to image such a high number of particles with full granular detail to achieve representivity. A second challenge is that sufficiently high-resolution 3D imaging techniques remain expensive and are sparsely available at research institutions. To address these challenges, a stereological generative adversarial network (GAN)-based model fitting approach is presented that can generate representative 3D information from 2D data, enabling characterization of materials in 3D using cost-effective 2D data. Once calibrated, this multi-scale model is able to rapidly generate virtual cathode particles that are statistically similar to experimental data, and thus is suitable for virtual characterization and materials testing through numerical simulations. A large dataset of simulated particles with inner grain architecture has been made publicly available.
Related papers
- L3DG: Latent 3D Gaussian Diffusion [74.36431175937285]
L3DG is the first approach for generative 3D modeling of 3D Gaussians through a latent 3D Gaussian diffusion formulation.
We employ a sparse convolutional architecture to efficiently operate on room-scale scenes.
By leveraging the 3D Gaussian representation, the generated scenes can be rendered from arbitrary viewpoints in real-time.
arXiv Detail & Related papers (2024-10-17T13:19:32Z) - A Comprehensive Evaluation of Generative Models in Calorimeter Shower Simulation [0.0]
"Fast Simulation" has been pivotal in overcoming computational bottlenecks.
The use of deep-generative models has sparked a surge of interest in surrogate modeling for detector simulations.
Our evaluation revealed that the CaloDiffusion and CaloScore generative models demonstrate the most accurate simulation of particle showers.
arXiv Detail & Related papers (2024-06-08T11:17:28Z) - A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation [4.169915659794567]
The dimensional extension from 2D to 3D is viewed as a highly challenging inverse problem from the current technological perspective.
A novel generative model that integrates the multiscale properties of U-net with and the generative capabilities of GAN has been proposed.
The model's accuracy is further improved by combining the image regularization loss with the Wasserstein distance loss.
arXiv Detail & Related papers (2024-02-24T13:42:34Z) - Using convolutional neural networks for stereological characterization
of 3D hetero-aggregates based on synthetic STEM data [0.0]
A parametric 3D model is presented, from which a wide spectrum of virtual hetero-aggregates can be generated.
The virtual structures are passed to a physics-based simulation tool in order to generate virtual scanning transmission electron microscopy (STEM) images.
Convolutional neural networks are trained to predict 3D structures of hetero-aggregates from 2D STEM images.
arXiv Detail & Related papers (2023-10-27T22:49:08Z) - GVP: Generative Volumetric Primitives [76.95231302205235]
We present Generative Volumetric Primitives (GVP), the first pure 3D generative model that can sample and render 512-resolution images in real-time.
GVP jointly models a number of primitives and their spatial information, both of which can be efficiently generated via a 2D convolutional network.
Experiments on several datasets demonstrate superior efficiency and 3D consistency of GVP over the state-of-the-art.
arXiv Detail & Related papers (2023-03-31T16:50:23Z) - Generative Deformable Radiance Fields for Disentangled Image Synthesis
of Topology-Varying Objects [52.46838926521572]
3D-aware generative models have demonstrated their superb performance to generate 3D neural radiance fields (NeRF) from a collection of monocular 2D images.
We propose a generative model for synthesizing radiance fields of topology-varying objects with disentangled shape and appearance variations.
arXiv Detail & Related papers (2022-09-09T08:44:06Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Transformer with Implicit Edges (TIE) captures the rich semantics of particle interactions in an edge-free manner.
We evaluate our model on diverse domains of varying complexity and materials.
arXiv Detail & Related papers (2022-07-22T03:45:29Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
We propose an automated pipeline for the analysis of X-ray diffraction images based on the Faster R-CNN deep learning architecture.
We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications.
arXiv Detail & Related papers (2022-02-22T15:39:00Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Learning 3D Granular Flow Simulations [6.308272531414633]
We present a Graph Neural Networks approach towards accurate modeling of complex 3D granular flow simulation processes created by the discrete element method LIGGGHTS.
We discuss how to implement Graph Neural Networks that deal with 3D objects, boundary conditions, particle - particle, and particle - boundary interactions.
arXiv Detail & Related papers (2021-05-04T17:27:59Z) - Generating 3D structures from a 2D slice with GAN-based dimensionality
expansion [0.0]
Generative adversarial networks (GANs) can be trained to generate 3D image data, which is useful for design optimisation.
We introduce a generative adversarial network architecture, SliceGAN, which is able to synthesise high fidelity 3D datasets using a single representative 2D image.
arXiv Detail & Related papers (2021-02-10T18:46:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.