Artificial intelligence, rationalization, and the limits of control in the public sector: the case of tax policy optimization
- URL: http://arxiv.org/abs/2407.05336v1
- Date: Sun, 7 Jul 2024 11:54:14 GMT
- Title: Artificial intelligence, rationalization, and the limits of control in the public sector: the case of tax policy optimization
- Authors: Jakob Mokander, Ralph Schroeder,
- Abstract summary: We show how much of the criticisms directed towards AI systems spring from well known tensions at the heart of Weberian rationalization.
Our analysis shows that building a machine-like tax system that promotes social and economic equality is possible.
It also highlights that AI driven policy optimization comes at the exclusion of other competing political values.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of artificial intelligence (AI) in the public sector is best understood as a continuation and intensification of long standing rationalization and bureaucratization processes. Drawing on Weber, we take the core of these processes to be the replacement of traditions with instrumental rationality, i.e., the most calculable and efficient way of achieving any given policy objective. In this article, we demonstrate how much of the criticisms, both among the public and in scholarship, directed towards AI systems spring from well known tensions at the heart of Weberian rationalization. To illustrate this point, we introduce a thought experiment whereby AI systems are used to optimize tax policy to advance a specific normative end, reducing economic inequality. Our analysis shows that building a machine-like tax system that promotes social and economic equality is possible. However, it also highlights that AI driven policy optimization (i) comes at the exclusion of other competing political values, (ii) overrides citizens sense of their noninstrumental obligations to each other, and (iii) undermines the notion of humans as self-determining beings. Contemporary scholarship and advocacy directed towards ensuring that AI systems are legal, ethical, and safe build on and reinforce central assumptions that underpin the process of rationalization, including the modern idea that science can sweep away oppressive systems and replace them with a rule of reason that would rescue humans from moral injustices. That is overly optimistic. Science can only provide the means, they cannot dictate the ends. Nonetheless, the use of AI in the public sector can also benefit the institutions and processes of liberal democracies. Most importantly, AI driven policy optimization demands that normative ends are made explicit and formalized, thereby subjecting them to public scrutiny and debate.
Related papers
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Public Constitutional AI [0.0]
We are increasingly subjected to the power of AI authorities.
How can we ensure AI systems have the legitimacy necessary for effective governance?
This essay argues that to secure AI legitimacy, we need methods that engage the public in designing and constraining AI systems.
arXiv Detail & Related papers (2024-06-24T15:00:01Z) - Exploiting the Margin: How Capitalism Fuels AI at the Expense of Minoritized Groups [0.0]
This paper explores the relationship between capitalism, racial injustice, and artificial intelligence (AI)
It argues that AI acts as a contemporary vehicle for age-old forms of exploitation.
The paper promotes an approach that integrates social justice and equity into the core of technological design and policy.
arXiv Detail & Related papers (2024-03-10T22:40:07Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - On the Efficiency of Ethics as a Governing Tool for Artificial
Intelligence [0.0]
Artificial Intelligence Ethics and Safety is an emerging research field that has been gaining popularity in recent years.
Several private, public and non-governmental organizations have published guidelines proposing ethical principles for regulating the use and development of autonomous intelligent systems.
We would like to conduct a critical analysis of the current state of AI Ethics and suggest that this form of governance is not sufficient to norm the AI industry and its developers.
arXiv Detail & Related papers (2022-10-27T09:46:33Z) - Aligning Artificial Intelligence with Humans through Public Policy [0.0]
This essay outlines research on AI that learn structures in policy data that can be leveraged for downstream tasks.
We believe this represents the "comprehension" phase of AI and policy, but leveraging policy as a key source of human values to align AI requires "understanding" policy.
arXiv Detail & Related papers (2022-06-25T21:31:14Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Relational Artificial Intelligence [5.5586788751870175]
Even though AI is traditionally associated with rational decision making, understanding and shaping the societal impact of AI in all its facets requires a relational perspective.
A rational approach to AI, where computational algorithms drive decision making independent of human intervention, has shown to result in bias and exclusion.
A relational approach, that focus on the relational nature of things, is needed to deal with the ethical, legal, societal, cultural, and environmental implications of AI.
arXiv Detail & Related papers (2022-02-04T15:29:57Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
It appears that the area of AI that is most analogous to the behaviour of economic entities is that of morally good decision-making.
Recent successes of deep learning for AI suggest that more implicit specifications work better than explicit ones for solving such problems.
arXiv Detail & Related papers (2019-12-29T17:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.