AiGAS-dEVL: An Adaptive Incremental Neural Gas Model for Drifting Data Streams under Extreme Verification Latency
- URL: http://arxiv.org/abs/2407.05379v1
- Date: Sun, 7 Jul 2024 14:04:57 GMT
- Title: AiGAS-dEVL: An Adaptive Incremental Neural Gas Model for Drifting Data Streams under Extreme Verification Latency
- Authors: Maria Arostegi, Miren Nekane Bilbao, Jesus L. Lobo, Javier Del Ser,
- Abstract summary: In streaming setups data flows are affected by factors that yield non-stationarities in the patterns (concept drift)
We propose a novel approach, AiGAS-dEVL, which relies on growing neural gas to characterize the distributions of all concepts detected within the stream over time.
Our approach exposes that the online analysis of the behavior of these points over time facilitates the definition of the evolution of concepts in the feature space.
- Score: 6.7236795813629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ever-growing speed at which data are generated nowadays, together with the substantial cost of labeling processes cause Machine Learning models to face scenarios in which data are partially labeled. The extreme case where such a supervision is indefinitely unavailable is referred to as extreme verification latency. On the other hand, in streaming setups data flows are affected by exogenous factors that yield non-stationarities in the patterns (concept drift), compelling models learned incrementally from the data streams to adapt their modeled knowledge to the concepts within the stream. In this work we address the casuistry in which these two conditions occur together, by which adaptation mechanisms to accommodate drifts within the stream are challenged by the lack of supervision, requiring further mechanisms to track the evolution of concepts in the absence of verification. To this end we propose a novel approach, AiGAS-dEVL (Adaptive Incremental neural GAS model for drifting Streams under Extreme Verification Latency), which relies on growing neural gas to characterize the distributions of all concepts detected within the stream over time. Our approach exposes that the online analysis of the behavior of these prototypical points over time facilitates the definition of the evolution of concepts in the feature space, the detection of changes in their behavior, and the design of adaptation policies to mitigate the effect of such changes in the model. We assess the performance of AiGAS-dEVL over several synthetic datasets, comparing it to that of state-of-the-art approaches proposed in the recent past to tackle this stream learning setup. Our results reveal that AiGAS-dEVL performs competitively with respect to the rest of baselines, exhibiting a superior adaptability over several datasets in the benchmark while ensuring a simple and interpretable instance-based adaptation strategy.
Related papers
- Robust Traffic Forecasting against Spatial Shift over Years [11.208740750755025]
We investigate state-temporal-the-art models using newly proposed traffic OOD benchmarks.
We find that these models experience significant decline in performance.
We propose a novel of Mixture Experts framework, which learns a set of graph generators during training and combines them to generate new graphs.
Our method is both parsimonious and efficacious, and can be seamlessly integrated into anytemporal model.
arXiv Detail & Related papers (2024-10-01T03:49:29Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Online Boosting Adaptive Learning under Concept Drift for Multistream
Classification [34.64751041290346]
Multistream classification poses significant challenges due to the necessity for rapid adaptation in dynamic streaming processes with concept drift.
We propose a novel Online Boosting Adaptive Learning (OBAL) method that adaptively learns the dynamic correlation among different streams.
arXiv Detail & Related papers (2023-12-17T23:10:39Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
This paper presents an optimal strategy for streaming contexts with limited labeled data, introducing an adaptive technique for unsupervised regression.
The proposed method leverages a sparse set of initial labels and introduces an innovative drift detection mechanism.
To enhance adaptability, we integrate the ADWIN (ADaptive WINdowing) algorithm with error generalization based on Root Mean Square Error (RMSE)
arXiv Detail & Related papers (2023-12-12T19:23:54Z) - EdgeFD: An Edge-Friendly Drift-Aware Fault Diagnosis System for
Industrial IoT [0.0]
We propose the Drift-Aware Weight Consolidation (DAWC) to mitigate the challenges posed by frequent data drift in the industrial Internet of Things (IIoT)
DAWC efficiently manages multiple data drift scenarios, minimizing the need for constant model fine-tuning on edge devices.
We have also developed a comprehensive diagnosis and visualization platform.
arXiv Detail & Related papers (2023-10-07T06:48:07Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - Temporal Domain Generalization with Drift-Aware Dynamic Neural Network [12.483886657900525]
We propose a Temporal Domain Generalization with Drift-Aware Dynamic Neural Network (DRAIN) framework.
Specifically, we formulate the problem into a Bayesian framework that jointly models the relation between data and model dynamics.
It captures the temporal drift of model parameters and data distributions and can predict models in the future without the presence of future data.
arXiv Detail & Related papers (2022-05-21T20:01:31Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.