論文の概要: Synthetic Test Data Generation Using Recurrent Neural Networks: A Position Paper
- arxiv url: http://arxiv.org/abs/2407.05410v1
- Date: Sun, 7 Jul 2024 15:28:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 19:47:49.313436
- Title: Synthetic Test Data Generation Using Recurrent Neural Networks: A Position Paper
- Title(参考訳): リカレントニューラルネットワークを用いた合成テストデータ生成:位置紙
- Authors: Razieh Behjati, Erik Arisholm, Chao Tan, Margrethe M. Bedregal,
- Abstract要約: 多くの組織、特に公共部門では、プライバシー上の懸念から、テスト目的で生産データを使用することはできない。
代替手段は、匿名化されたデータ、または合成生成されたデータを使用することである。
予備実験では、リカレントニューラルネットワークを用いて、代表的かつ高精度なデータを生成することができた。
- 参考スコア(独自算出の注目度): 1.4399466761595159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Testing in production-like test environments is an essential part of quality assurance processes in many industries. Provisioning of such test environments, for information-intensive services, involves setting up databases that are rich-enough to enable simulating a wide variety of user scenarios. While production data is perhaps the gold-standard here, many organizations, particularly within the public sectors, are not allowed to use production data for testing purposes due to privacy concerns. The alternatives are to use anonymized data, or synthetically generated data. In this paper, we elaborate on these alternatives and compare them in an industrial context. Further we focus on synthetic data generation and investigate the use of recurrent neural networks for this purpose. In our preliminary experiments, we were able to generate representative and highly accurate data using a recurrent neural network. These results open new research questions that we discuss here, and plan to investigate in our future research.
- Abstract(参考訳): 製品ライクなテスト環境でのテストは、多くの産業における品質保証プロセスの重要な部分です。
このようなテスト環境のプロビジョニングは、情報集約型サービスのために、さまざまなユーザシナリオをシミュレートするために、十分にリッチなデータベースをセットアップする必要がある。
プロダクションデータはおそらくゴールドスタンダードだが、多くの組織、特に公共部門では、プライバシの懸念により、テスト目的でプロダクションデータを使用することはできない。
代替手段は、匿名化されたデータ、または合成生成されたデータを使用することである。
本稿では,これらの代替案について詳述し,産業的文脈で比較する。
さらに、この目的のために、合成データ生成とリカレントニューラルネットワークの利用について検討する。
予備実験では、リカレントニューラルネットワークを用いて、代表的かつ高精度なデータを生成することができた。
これらの結果は、ここで論じる新たな研究課題を開き、今後の研究について検討する計画である。
関連論文リスト
- Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented Generation (RAG)は、外部知識ソースから取得した関連情報を統合することにより、言語モデルの出力を強化する。
RAGシステムは、プライベートデータを取得する際に深刻なプライバシーリスクに直面する可能性がある。
検索データに対するプライバシー保護の代替として,合成データを用いる方法を提案する。
論文 参考訳(メタデータ) (2024-06-20T22:53:09Z) - Towards Sim-to-Real Industrial Parts Classification with Synthetic Dataset [6.481744951262474]
我々は、Sim-to-Realチャレンジの予備的なテストベッドとして機能する合成データセットを導入する。
6つの産業用ユースケースのうち17のオブジェクトが含まれており、その中には独立した部品や組み立て部品が含まれる。
すべてのサンプル画像は、ランダムな背景と、ドメインのランダム化の重要性を評価する後処理を伴わない。
論文 参考訳(メタデータ) (2024-04-12T19:04:59Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Generative Adversarial Networks for Data Augmentation [0.0]
GANは、データ拡張、画像生成、ドメイン適応など、さまざまなタスクで医療画像解析に利用されてきた。
GANは利用可能なデータセットを増やすために使用できる合成サンプルを生成することができる。
医用画像におけるGANの使用は, 画像が高品質で, 臨床現場での使用に適していることを保証するために, 依然として研究の活発な領域である点に留意する必要がある。
論文 参考訳(メタデータ) (2023-06-03T06:33:33Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - Synthetic Data in Healthcare [10.555189948915492]
本稿では,データ作成のための物理・統計シミュレーションの事例と医療・医療への応用について述べる。
人工物は、プライバシ、エクイティ、安全性、継続的な、因果学習を促進することができるが、欠陥や盲点を導入し、バイアスを伝播または誇張するリスクも負う。
論文 参考訳(メタデータ) (2023-04-06T17:23:39Z) - Generating Realistic Synthetic Relational Data through Graph Variational
Autoencoders [47.89542334125886]
変動型オートエンコーダフレームワークとグラフニューラルネットワークを組み合わせることで,リアルな合成関係データベースを生成する。
結果は、実際のデータベースの構造が結果の合成データセットに正確に保存されていることを示している。
論文 参考訳(メタデータ) (2022-11-30T10:40:44Z) - FairGen: Fair Synthetic Data Generation [0.3149883354098941]
本稿では,GANアーキテクチャに依存しないより公平な合成データを生成するパイプラインを提案する。
合成データを生成する場合、ほとんどのGANはトレーニングデータに存在するバイアスを増幅するが、これらのバイアスを誘発するサンプルを除去することで、GANは本質的に真の情報的サンプルに重点を置いている、と我々は主張する。
論文 参考訳(メタデータ) (2022-10-24T08:13:47Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
異常検出は、通常の値空間とは異なる異常状態、インスタンス、あるいはデータポイントを検出する方法を記述する。
本稿では,産業生産における人工知能へのデータ中心のアプローチに寄与する。
論文 参考訳(メタデータ) (2022-09-21T08:14:34Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Enabling Synthetic Data adoption in regulated domains [1.9512796489908306]
Model-CentricからData-Centricへの転換は、アルゴリズムよりもデータとその品質に重点を置いている。
特に、高度に規制されたシナリオにおける情報のセンシティブな性質を考慮する必要がある。
このようなコンウンドラムをバイパスする巧妙な方法は、生成プロセスから得られたデータであるSynthetic Dataに依存し、実際のデータプロパティを学習する。
論文 参考訳(メタデータ) (2022-04-13T10:53:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。