論文の概要: Explainable AI: Comparative Analysis of Normal and Dilated ResNet Models for Fundus Disease Classification
- arxiv url: http://arxiv.org/abs/2407.05440v1
- Date: Sun, 7 Jul 2024 17:03:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 19:38:04.502799
- Title: Explainable AI: Comparative Analysis of Normal and Dilated ResNet Models for Fundus Disease Classification
- Title(参考訳): 説明可能なAI: 基礎疾患分類のための正常および拡張ResNetモデルの比較分析
- Authors: P. N. Karthikayan, Yoga Sri Varshan V, Hitesh Gupta Kattamuri, Umarani Jayaraman,
- Abstract要約: 本稿では網膜基底像からの疾患分類のための拡張Residual Network(ResNet)モデルを提案する。
拡張畳み込みフィルタは、ResNetモデルの上位層における通常の畳み込みフィルタを置き換えるために使用される。
拡張されたResNetモデルは、平均F1スコアが0.71、0.70、0.69、0.67、0.70の通常のResNetと比較して有望な結果を示す。
- 参考スコア(独自算出の注目度): 0.8437187555622164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents dilated Residual Network (ResNet) models for disease classification from retinal fundus images. Dilated convolution filters are used to replace normal convolution filters in the higher layers of the ResNet model (dilated ResNet) in order to improve the receptive field compared to the normal ResNet model for disease classification. This study introduces computer-assisted diagnostic tools that employ deep learning, enhanced with explainable AI techniques. These techniques aim to make the tool's decision-making process transparent, thereby enabling medical professionals to understand and trust the AI's diagnostic decision. They are particularly relevant in today's healthcare landscape, where there is a growing demand for transparency in AI applications to ensure their reliability and ethical use. The dilated ResNet is used as a replacement for the normal ResNet to enhance the classification accuracy of retinal eye diseases and reduce the required computing time. The dataset used in this work is the Ocular Disease Intelligent Recognition (ODIR) dataset which is a structured ophthalmic database with eight classes covering most of the common retinal eye diseases. The evaluation metrics used in this work include precision, recall, accuracy, and F1 score. In this work, a comparative study has been made between normal ResNet models and dilated ResNet models on five variants namely ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. The dilated ResNet model shows promising results as compared to normal ResNet with an average F1 score of 0.71, 0.70, 0.69, 0.67, and 0.70 respectively for the above respective variants in ODIR multiclass disease classification.
- Abstract(参考訳): 本稿では網膜基底像からの疾患分類のための拡張Residual Network(ResNet)モデルを提案する。
拡張畳み込みフィルタは、ResNetモデル(Dilated ResNet)の上位層における通常の畳み込みフィルタを置き換えるために用いられる。
本研究では,ディープラーニングを応用し,説明可能なAI技術によって強化されたコンピュータ支援診断ツールを紹介する。
これらのテクニックは、ツールの意思決定プロセスを透過的にすることで、医療専門家がAIの診断決定を理解し、信頼することを可能にします。
それらは、信頼性と倫理的使用を保証するために、AIアプリケーションに透明性を求める声が高まっている、今日のヘルスケアの状況に特に関係している。
拡張ResNetは、網膜眼疾患の分類精度を高め、必要な計算時間を短縮するために、通常のResNetの代替として使用される。
この研究で使用されるデータセットは眼疾患知能認識(Ocular Disease Intelligent Recognition, ODIR)データセットである。
この研究で使用される評価指標には、精度、リコール、精度、F1スコアが含まれる。
本研究では、ResNet-18、ResNet-34、ResNet-50、ResNet-101、ResNet-152の5種類のモデルに対して、通常のResNetモデルと拡張ResNetモデルの比較研究を行った。
The dilated ResNet model showed promising results than normal ResNet with average F1 score of 0.71, 0.70, 0.69, 0.67, 0.70 for the each variants in ODIR multiclass disease classification。
関連論文リスト
- Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
本研究は、変性眼疾患である角膜症(keratoconus)の診断のために、訓練済みの8つのCNNを比較した。
MobileNetV2は角膜と正常な症例を誤分類の少ない場合に最も正確なモデルであった。
論文 参考訳(メタデータ) (2024-08-16T20:15:24Z) - Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
この研究では、MaxVit、EfficientVit、EfficientNet、EfficientNetV2、MobileNetV3といった最先端アーキテクチャを使用して、迅速かつ正確な結果を得る。
本手法は,従来の手法の速度と精度の懸念に対処するだけでなく,血液学的解析における革新的な深層学習モデルの適用性についても検討する。
論文 参考訳(メタデータ) (2024-06-30T16:49:29Z) - Explainable Convolutional Neural Networks for Retinal Fundus Classification and Cutting-Edge Segmentation Models for Retinal Blood Vessels from Fundus Images [0.0]
眼底画像における網膜血管の検査による早期診断の重要領域に焦点を当てた研究。
基礎画像解析の研究は,8つの事前学習CNNモデルを用いたディープラーニングに基づく分類を進歩させる。
本研究では,Grad-CAM,Grad-CAM++,Score-CAM,Faster Score-CAM,Layer CAMなどの説明可能なAI技術を利用する。
論文 参考訳(メタデータ) (2024-05-12T17:21:57Z) - Benchmarking Deep Learning Frameworks for Automated Diagnosis of Ocular
Toxoplasmosis: A Comprehensive Approach to Classification and Segmentation [1.3701366534590498]
眼トキソプラズマ症(Ocular Toxoplasmosis,OT)は、眼疾患を引き起こすT. gondiiによって引き起こされる一般的な眼感染症である。
本研究は、DL技術を活用し、安価で自動化され、使いやすく、正確な診断方法を開発しようとしている将来の研究者のためのガイドを提供する。
論文 参考訳(メタデータ) (2023-05-18T13:42:15Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Stain Normalized Breast Histopathology Image Recognition using
Convolutional Neural Networks for Cancer Detection [9.826027427965354]
近年の進歩により、畳み込みニューラルネットワーク(CNN)アーキテクチャは乳がん検出のためのコンピュータ支援診断(CAD)システムの設計に利用できることが示されている。
乳腺病理像の2値分類のためのCNNモデルについて検討した。
我々は,200倍,400倍に拡大した病理像に対して,トレーニング済みのCNNネットワークを利用可能なBreaKHisデータセットで検証した。
論文 参考訳(メタデータ) (2022-01-04T03:09:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
ニューラルネットワークのアンサンブルを用いて生体医用画像の分類を行う。
ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign。
論文 参考訳(メタデータ) (2020-11-24T01:53:39Z) - RetiNerveNet: Using Recursive Deep Learning to Estimate Pointwise 24-2
Visual Field Data based on Retinal Structure [109.33721060718392]
緑内障は 世界でも 不可逆的な盲目の 主要な原因です 7000万人以上が 影響を受けています
The Standard Automated Perimetry (SAP) test's innate difficulty and its high test-retest variable, we propose the RetiNerveNet。
論文 参考訳(メタデータ) (2020-10-15T03:09:08Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Exploration of Interpretability Techniques for Deep COVID-19
Classification using Chest X-ray Images [10.01138352319106]
5種類のディープラーニングモデル(ResNet18、ResNet34、InceptionV3、InceptionResNetV2、DenseNet161)とそれらのEnsembleは、Chest X-Ray画像を用いて、新型コロナウイルス、肺炎、健康な被験者を分類するために使用されている。
新型コロナウイルスの分類における平均的なMicro-F1スコアは0.66から0.875の範囲で、ネットワークモデルのアンサンブルは0.89である。
論文 参考訳(メタデータ) (2020-06-03T22:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。