Explainable AI: Comparative Analysis of Normal and Dilated ResNet Models for Fundus Disease Classification
- URL: http://arxiv.org/abs/2407.05440v2
- Date: Sat, 31 Aug 2024 20:26:49 GMT
- Title: Explainable AI: Comparative Analysis of Normal and Dilated ResNet Models for Fundus Disease Classification
- Authors: P. N. Karthikayan, Yoga Sri Varshan V, Hitesh Gupta Kattamuri, Umarani Jayaraman,
- Abstract summary: This paper presents dilated Residual Network (ResNet) models for disease classification from retinal fundus images.
Dilated convolution filters are used to replace normal convolution filters in the higher layers of the ResNet model.
The dilated ResNet model shows promising results as compared to normal ResNet with an average F1 score of 0.71, 0.70, 0.69, 0.67, and 0.70 respectively.
- Score: 0.8437187555622164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents dilated Residual Network (ResNet) models for disease classification from retinal fundus images. Dilated convolution filters are used to replace normal convolution filters in the higher layers of the ResNet model (dilated ResNet) in order to improve the receptive field compared to the normal ResNet model for disease classification. This study introduces computer-assisted diagnostic tools that employ deep learning, enhanced with explainable AI techniques. These techniques aim to make the tool's decision-making process transparent, thereby enabling medical professionals to understand and trust the AI's diagnostic decision. They are particularly relevant in today's healthcare landscape, where there is a growing demand for transparency in AI applications to ensure their reliability and ethical use. The dilated ResNet is used as a replacement for the normal ResNet to enhance the classification accuracy of retinal eye diseases and reduce the required computing time. The dataset used in this work is the Ocular Disease Intelligent Recognition (ODIR) dataset which is a structured ophthalmic database with eight classes covering most of the common retinal eye diseases. The evaluation metrics used in this work include precision, recall, accuracy, and F1 score. In this work, a comparative study has been made between normal ResNet models and dilated ResNet models on five variants namely ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. The dilated ResNet model shows promising results as compared to normal ResNet with an average F1 score of 0.71, 0.70, 0.69, 0.67, and 0.70 respectively for the above respective variants in ODIR multiclass disease classification.
Related papers
- Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
This study compares eight pre-trained CNNs for diagnosing keratoconus, a degenerative eye disease.
MobileNetV2 was the best accurate model in identifying keratoconus and normal cases with few misclassifications.
arXiv Detail & Related papers (2024-08-16T20:15:24Z) - Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
arXiv Detail & Related papers (2024-06-30T16:49:29Z) - Explainable Convolutional Neural Networks for Retinal Fundus Classification and Cutting-Edge Segmentation Models for Retinal Blood Vessels from Fundus Images [0.0]
Research focuses on the critical field of early diagnosis of disease by examining retinal blood vessels in fundus images.
Our research in fundus image analysis advances deep learning-based classification using eight pre-trained CNN models.
To enhance interpretability, we utilize Explainable AI techniques such as Grad-CAM, Grad-CAM++, Score-CAM, Faster Score-CAM, and Layer CAM.
arXiv Detail & Related papers (2024-05-12T17:21:57Z) - Benchmarking Deep Learning Frameworks for Automated Diagnosis of Ocular
Toxoplasmosis: A Comprehensive Approach to Classification and Segmentation [1.3701366534590498]
Ocular Toxoplasmosis (OT) is a common eye infection caused by T. gondii that can cause vision problems.
This research seeks to provide a guide for future researchers looking to utilise DL techniques and develop a cheap, automated, easy-to-use, and accurate diagnostic method.
arXiv Detail & Related papers (2023-05-18T13:42:15Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Stain Normalized Breast Histopathology Image Recognition using
Convolutional Neural Networks for Cancer Detection [9.826027427965354]
Recent advances have shown that the convolutional Neural Network (CNN) architectures can be used to design a Computer Aided Diagnostic (CAD) System for breast cancer detection.
We consider some contemporary CNN models for binary classification of breast histopathology images.
We have validated the trained CNN networks on a publicly available BreaKHis dataset, for 200x and 400x magnified histopathology images.
arXiv Detail & Related papers (2022-01-04T03:09:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - RetiNerveNet: Using Recursive Deep Learning to Estimate Pointwise 24-2
Visual Field Data based on Retinal Structure [109.33721060718392]
glaucoma is the leading cause of irreversible blindness in the world, affecting over 70 million people.
Due to the Standard Automated Perimetry (SAP) test's innate difficulty and its high test-retest variability, we propose the RetiNerveNet.
arXiv Detail & Related papers (2020-10-15T03:09:08Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Exploration of Interpretability Techniques for Deep COVID-19
Classification using Chest X-ray Images [10.01138352319106]
Five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their Ensemble have been used in this paper to classify COVID-19, pneumoniae and healthy subjects using Chest X-Ray images.
The mean Micro-F1 score of the models for COVID-19 classifications ranges from 0.66 to 0.875, and is 0.89 for the Ensemble of the network models.
arXiv Detail & Related papers (2020-06-03T22:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.