論文の概要: CAV-AD: A Robust Framework for Detection of Anomalous Data and Malicious Sensors in CAV Networks
- arxiv url: http://arxiv.org/abs/2407.05461v1
- Date: Sun, 7 Jul 2024 18:19:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 19:38:04.476577
- Title: CAV-AD: A Robust Framework for Detection of Anomalous Data and Malicious Sensors in CAV Networks
- Title(参考訳): CAV-AD: CAVネットワークにおける異常データと異常センサの検出のためのロバストフレームワーク
- Authors: Md Sazedur Rahman, Mohamed Elmahallawy, Sanjay Madria, Samuel Frimpong,
- Abstract要約: CAVはセンサーの読み取りに頼っているため、重大な脅威に弱い。
これらの読み取りを操作することは、CAVネットワークのセキュリティを損なう可能性がある。
本稿では,CAV-ADと呼ばれる異常検出のための新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.824969449883056
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The adoption of connected and automated vehicles (CAVs) has sparked considerable interest across diverse industries, including public transportation, underground mining, and agriculture sectors. However, CAVs' reliance on sensor readings makes them vulnerable to significant threats. Manipulating these readings can compromise CAV network security, posing serious risks for malicious activities. Although several anomaly detection (AD) approaches for CAV networks are proposed, they often fail to: i) detect multiple anomalies in specific sensor(s) with high accuracy or F1 score, and ii) identify the specific sensor being attacked. In response, this paper proposes a novel framework tailored to CAV networks, called CAV-AD, for distinguishing abnormal readings amidst multiple anomaly data while identifying malicious sensors. Specifically, CAV-AD comprises two main components: i) A novel CNN model architecture called optimized omni-scale CNN (O-OS-CNN), which optimally selects the time scale by generating all possible kernel sizes for input time series data; ii) An amplification block to increase the values of anomaly readings, enhancing sensitivity for detecting anomalies. Not only that, but CAV-AD integrates the proposed O-OS-CNN with a Kalman filter to instantly identify the malicious sensors. We extensively train CAV-AD using real-world datasets containing both instant and constant attacks, evaluating its performance in detecting intrusions from multiple anomalies, which presents a more challenging scenario. Our results demonstrate that CAV-AD outperforms state-of-the-art methods, achieving an average accuracy of 98% and an average F1 score of 89\%, while accurately identifying the malicious sensors.
- Abstract(参考訳): コネクテッド・アンド・オートマチック・ビークル(CAV)の採用は、公共交通機関、地下鉱業、農業など様々な産業で大きな関心を集めている。
しかし、CAVはセンサーの読み取りに頼っているため、重大な脅威に弱い。
これらの読み取りを操作することは、CAVネットワークのセキュリティを損なう可能性がある。
CAVネットワークに対するいくつかの異常検出(AD)アプローチが提案されているが、しばしば失敗する。
一 特定のセンサにおける複数の異常を高精度又はF1スコアで検出し、
二 攻撃されている特定のセンサを特定すること。
そこで本研究では,複数の異常データ中の異常読みを識別し,悪意のあるセンサを識別する,CAVネットワークに適した新しいフレームワークであるCAV-ADを提案する。
具体的には、CAV-ADは2つの主成分から構成される。
一 最適化オムニスケールCNN(O-OS-CNN)と呼ばれる新しいCNNモデルアーキテクチャで、入力時系列データに対して可能なカーネルサイズをすべて生成し、最適な時間スケールを選択する。
二 異常読影の値を高めるための増幅ブロックであって、異常を検出するための感度を高めること。
それだけでなく、CAV-ADは提案されたO-OS-CNNとカルマンフィルタを統合し、悪意のあるセンサーを即座に識別する。
我々は,同時攻撃と定常攻撃の両方を含む実世界のデータセットを用いてCAV-ADを広範囲に訓練し,複数の異常から侵入を検出する際の性能を評価し,より困難なシナリオを示す。
以上の結果から,CAV-ADの精度は98%,F1スコアは99%と高い結果を得た。
関連論文リスト
- Multi-Sensor Fusion for UAV Classification Based on Feature Maps of Image and Radar Data [4.392337343771302]
本稿では,すでに処理されているマルチセンサデータを新しいディープニューラルネットワークに融合させて,UAV検出のための分類精度を高めるシステムを提案する。
このモデルは、熱、光、レーダーデータに関連する個々の物体の検出と分類モデルから抽出された高レベル特徴を融合する。
論文 参考訳(メタデータ) (2024-10-21T15:12:37Z) - Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations [13.529124221397822]
ディープニューラルネットワーク(DNN)に基づく2次元物体検出のための新しいイントロスペクションソリューションを提案する。
KITTIとBDDのデータセットで評価された1段階および2段階のオブジェクト検出器を用いて,2次元オブジェクト検出におけるエラー検出のためのSOTAイントロスペクション機構を実装した。
性能評価の結果,提案手法はSOTA法より優れており,BDDデータセットのエラー率を9%から17%まで絶対的に削減できることがわかった。
論文 参考訳(メタデータ) (2024-03-02T10:56:14Z) - An Online Ensemble Learning Model for Detecting Attacks in Wireless
Sensor Networks [0.0]
我々は、アンサンブル学習として知られる重要な機械学習の概念を適用して、インテリジェントで効率的で、かつ、高機能な侵入検知システムを開発する。
本稿では,感覚データ解析における同種・異種のオンラインアンサンブルの応用について検討する。
提案されたオンラインアンサンブルのうち、アダプティブ・ランダム・フォレスト(ARF)とHoeffding Adaptive Tree(HAT)アルゴリズムを組み合わせた異種アンサンブルと、10モデルからなる同種アンサンブルHATは、それぞれ96.84%と97.2%という高い検出率を達成した。
論文 参考訳(メタデータ) (2022-04-28T23:10:47Z) - AVTPnet: Convolutional Autoencoder for AVTP anomaly detection in
Automotive Ethernet Networks [2.415997479508991]
本稿では,Audio Video Transport Protocol (AVTP) 上での異常のオフライン検出のための畳み込みオートエンコーダ (CAE) を提案する。
提案手法は、最近発表された"Automotive Ethernet Intrusion dataset"に基づいて評価される。
論文 参考訳(メタデータ) (2022-01-31T19:13:20Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
我々は、自動話者検証(ASV)のための敵対サンプルを見つけるために、ニューラルボコーダを採用する。
元の音声と再合成音声のASVスコアの違いは、真正と逆正のサンプルの識別に良い指標であることがわかった。
私たちのコードは、将来的な比較作業のためにオープンソースにされます。
論文 参考訳(メタデータ) (2021-07-01T08:58:16Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - FCOS: A simple and strong anchor-free object detector [111.87691210818194]
物体検出を画素ごとの予測方式で解くために, 完全畳み込み型一段物検出器 (FCOS) を提案する。
RetinaNet、SSD、YOLOv3、Faster R-CNNといった最先端のオブジェクト検出器のほとんどは、事前に定義されたアンカーボックスに依存している。
対照的に、提案した検出器FCOSはアンカーボックスフリーであり、提案はフリーである。
論文 参考訳(メタデータ) (2020-06-14T01:03:39Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Multi-stage Jamming Attacks Detection using Deep Learning Combined with
Kernelized Support Vector Machine in 5G Cloud Radio Access Networks [17.2528983535773]
本研究は5G C-RANにML-IDS(Multi-stage Machine Learning-based Intrusion Detection)を配置することに焦点を当てる。
一定のジャミング、ランダムジャミング、ジャミング、リアクティブジャミングの4種類のジャミング攻撃を検出し、分類することができる。
最終分類精度は94.51%で、偽陰性率は7.84%である。
論文 参考訳(メタデータ) (2020-04-13T17:21:45Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。