論文の概要: Multi-Sensor Fusion for UAV Classification Based on Feature Maps of Image and Radar Data
- arxiv url: http://arxiv.org/abs/2410.16089v1
- Date: Mon, 21 Oct 2024 15:12:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:17:08.802737
- Title: Multi-Sensor Fusion for UAV Classification Based on Feature Maps of Image and Radar Data
- Title(参考訳): 画像とレーダデータの特徴マップに基づくUAV分類のためのマルチセンサフュージョン
- Authors: Nikos Sakellariou, Antonios Lalas, Konstantinos Votis, Dimitrios Tzovaras,
- Abstract要約: 本稿では,すでに処理されているマルチセンサデータを新しいディープニューラルネットワークに融合させて,UAV検出のための分類精度を高めるシステムを提案する。
このモデルは、熱、光、レーダーデータに関連する個々の物体の検出と分類モデルから抽出された高レベル特徴を融合する。
- 参考スコア(独自算出の注目度): 4.392337343771302
- License:
- Abstract: The unique cost, flexibility, speed, and efficiency of modern UAVs make them an attractive choice in many applications in contemporary society. This, however, causes an ever-increasing number of reported malicious or accidental incidents, rendering the need for the development of UAV detection and classification mechanisms essential. We propose a methodology for developing a system that fuses already processed multi-sensor data into a new Deep Neural Network to increase its classification accuracy towards UAV detection. The DNN model fuses high-level features extracted from individual object detection and classification models associated with thermal, optronic, and radar data. Additionally, emphasis is given to the model's Convolutional Neural Network (CNN) based architecture that combines the features of the three sensor modalities by stacking the extracted image features of the thermal and optronic sensor achieving higher classification accuracy than each sensor alone.
- Abstract(参考訳): 現代のUAVのユニークなコスト、柔軟性、速度、効率は、現代の社会における多くの応用において魅力的な選択である。
しかし、このことは、報告されている悪意または偶発的な事故の増加を招き、UAV検出と分類メカニズムの開発の必要性が増している。
本稿では,すでに処理されているマルチセンサデータを新しいディープニューラルネットワークに融合させて,UAV検出のための分類精度を高めるシステム開発手法を提案する。
DNNモデルは、熱、光、レーダーデータに関連する個々の物体の検出と分類モデルから抽出された高レベル特徴を融合する。
さらに、モデルにおける畳み込みニューラルネットワーク(CNN)に基づくアーキテクチャは、各センサ単独よりも高い分類精度を達成するために、抽出した熱・光センサの画像特徴を積み重ねることにより、3つのセンサモダリティの特徴を組み合わせたものである。
関連論文リスト
- Zero-Shot Detection of AI-Generated Images [54.01282123570917]
AI生成画像を検出するゼロショットエントロピー検出器(ZED)を提案する。
機械によるテキスト検出の最近の研究に触発された私たちのアイデアは、分析対象の画像が実際の画像のモデルと比較してどれだけ驚くかを測定することである。
ZEDは精度の点でSoTAよりも平均3%以上改善されている。
論文 参考訳(メタデータ) (2024-09-24T08:46:13Z) - One Masked Model is All You Need for Sensor Fault Detection, Isolation and Accommodation [1.0359008237358598]
マスク付きモデルと自己教師型学習を用いたセンサ故障検出のための新しいフレームワークを提案する。
提案手法を,オフショアGE風力タービンのパブリックデータセットと実世界のデータセットの両方で検証する。
提案手法は,センサ計測の精度と信頼性をリアルタイムに向上する可能性がある。
論文 参考訳(メタデータ) (2024-03-24T13:44:57Z) - Resource-Efficient Gesture Recognition using Low-Resolution Thermal
Camera via Spiking Neural Networks and Sparse Segmentation [1.7758299835471887]
本研究は,安価で低解像度(24×32)熱センサを用いた手動作認識のための新しいアプローチを提案する。
標準のRGBカメラと比較して、提案システムは照明のバリエーションに敏感である。
本稿では,最近提案されたモノスタブル・マルチバイブレータ(MMV)ニューラルネットワークを新しいSNNのクラスとして革新的に利用することで,メモリと計算の複雑さが1桁以上小さくなることを示す。
論文 参考訳(メタデータ) (2024-01-12T13:20:01Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
本研究は,カメラとライダー情報を用いた物体検出ネットワークに新たな改良を加えたものである。
同じ車両内の隣のカメラにまたがって物体を再識別する作業のために、追加のブランチが組み込まれている。
その結果,従来の非最大抑圧(NMS)技術よりも,この手法が優れていることが示された。
論文 参考訳(メタデータ) (2023-10-09T15:16:35Z) - Deep convolutional neural networks for cyclic sensor data [0.0]
本研究では,センサによる条件モニタリングに焦点をあて,深層学習技術の応用について検討する。
本研究は,従来手法を用いたベースラインモデル,早期センサフュージョンを用いた単一CNNモデル,後期センサフュージョンを用いた2車線CNNモデル (2L-CNN) の3つのモデルの性能を比較した。
論文 参考訳(メタデータ) (2023-08-14T07:51:15Z) - Improved Static Hand Gesture Classification on Deep Convolutional Neural
Networks using Novel Sterile Training Technique [2.534406146337704]
非接触手ポーズと静的ジェスチャー認識は多くのアプリケーションで注目されている。
本稿では, ステレオ画像の導入により, 効率的なデータ収集手法と深部CNN訓練手法を提案する。
提案されたデータ収集とトレーニング手法を適用すると、静的ハンドジェスチャの分類率が85%から93%に向上する。
論文 参考訳(メタデータ) (2023-05-03T11:10:50Z) - Multi-level and multi-modal feature fusion for accurate 3D object
detection in Connected and Automated Vehicles [0.8701566919381223]
本稿では,3段階特徴抽出器を用いたディープニューラルネットワークを用いた3次元物体検出モデルを提案する。
提案した特徴抽出器は、2つの入力感覚モーダルから高次特徴を抽出し、畳み込み過程に捨てられた重要な特徴を回収する。
新たな融合方式は、感覚のモダリティと畳み込み層を効果的に融合させ、最も優れたグローバルな特徴を見出す。
論文 参考訳(メタデータ) (2022-12-15T00:25:05Z) - An Empirical Study of Adder Neural Networks for Object Detection [67.64041181937624]
加算ニューラルネットワーク(AdderNets)は、追加操作のみを伴う画像分類において、優れたパフォーマンスを示している。
本稿では,オブジェクト検出のためのAdderNetsを実証研究する。
論文 参考訳(メタデータ) (2021-12-27T11:03:13Z) - ASFD: Automatic and Scalable Face Detector [129.82350993748258]
ASFD(Automatic and Scalable Face Detector)を提案する。
ASFDはニューラルアーキテクチャ検索技術の組み合わせと新たな損失設計に基づいている。
ASFD-D0は120FPS以上で動作し、MobilenetはVGA解像度の画像を撮影しています。
論文 参考訳(メタデータ) (2020-03-25T06:00:47Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。