論文の概要: An Experimental Comparison of Transfer Learning against Self-supervised Learning
- arxiv url: http://arxiv.org/abs/2407.05592v1
- Date: Mon, 8 Jul 2024 04:14:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 17:10:02.874205
- Title: An Experimental Comparison of Transfer Learning against Self-supervised Learning
- Title(参考訳): 自己指導型学習に対する移動学習の実験的検討
- Authors: Zehui Zhao, Laith Alzubaidi, Jinglan Zhang, Ye Duan, Usman Naseem, Yuantong Gu,
- Abstract要約: 本稿では,医療分野における転帰学習と自己指導学習のパフォーマンスと堅牢性を比較した。
我々は、データ不均衡、データの不足、ドメインミスマッチなど、医療領域で共通するいくつかの問題でデータをテストした。
医療分野における転帰学習と自己指導型学習の活用を支援するための推奨事項を提示する。
- 参考スコア(独自算出の注目度): 6.744847405966574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, transfer learning and self-supervised learning have gained significant attention within the medical field due to their ability to mitigate the challenges posed by limited data availability, improve model generalisation, and reduce computational expenses. Transfer learning and self-supervised learning hold immense potential for advancing medical research. However, it is crucial to recognise that transfer learning and self-supervised learning architectures exhibit distinct advantages and limitations, manifesting variations in accuracy, training speed, and robustness. This paper compares the performance and robustness of transfer learning and self-supervised learning in the medical field. Specifically, we pre-trained two models using the same source domain datasets with different pre-training methods and evaluated them on small-sized medical datasets to identify the factors influencing their final performance. We tested data with several common issues in medical domains, such as data imbalance, data scarcity, and domain mismatch, through comparison experiments to understand their impact on specific pre-trained models. Finally, we provide recommendations to help users apply transfer learning and self-supervised learning methods in medical areas, and build more convenient and efficient deployment strategies.
- Abstract(参考訳): 近年,データ可用性の制限による課題の緩和,モデル一般化の改善,計算コストの削減などにより,医療分野における転帰学習や自己指導型学習が注目されている。
トランスファーラーニングと自己指導型学習は、医学研究を前進させる大きな可能性を秘めている。
しかし, 伝達学習と自己指導型学習アーキテクチャは, 精度, 訓練速度, 頑健さの相違を呈し, 異なる利点と限界を示すことを認識することが重要である。
本稿では,医療分野における転帰学習と自己指導学習のパフォーマンスと堅牢性を比較した。
具体的には、異なる事前トレーニング手法で同じソースドメインデータセットを用いて2つのモデルを事前訓練し、それらを小型の医療データセットで評価し、最終的なパフォーマンスに影響を与える要因を特定した。
我々は、データ不均衡、データ不足、ドメインミスマッチなどの医療領域で共通の問題のあるデータを比較実験により検証し、特定のトレーニング済みモデルへの影響を解明した。
最後に,医療分野における転帰学習と自己指導型学習の活用を支援するとともに,より便利で効率的な展開戦略を構築することを提案する。
関連論文リスト
- Jumpstarting Surgical Computer Vision [2.7396997668655163]
我々は、多様な外科的データセットを柔軟に活用するために、自己教師付き学習を採用する。
腹腔鏡下胆嚢摘出術と腹腔鏡下子宮摘出術の位相認識と安全性の検討を行った。
事前トレーニングデータセットの構成は、さまざまな下流タスクに対するSSLメソッドの有効性に大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2023-12-10T18:54:16Z) - Transfer learning from a sparsely annotated dataset of 3D medical images [4.477071833136902]
本研究では,医療画像における臓器分割のための深部畳み込みニューラルネットワークの性能向上のための伝達学習の活用について検討する。
ベースセグメンテーションモデルは、大小の注釈付きデータセットに基づいてトレーニングされ、その重みは4つの新しい下流セグメンテーションタスクのトランスファー学習に使用された。
その結果,小規模なデータセットが利用可能になった場合には,ベースモデルからの移動学習が有用であることが示唆された。
論文 参考訳(メタデータ) (2023-11-08T21:31:02Z) - A Survey of the Impact of Self-Supervised Pretraining for Diagnostic
Tasks with Radiological Images [71.26717896083433]
自己教師付き事前学習は,伝達学習における特徴表現の改善に有効であることが観察されている。
本総説ではX線, CT, 磁気共鳴, 超音波画像における使用法について概説する。
論文 参考訳(メタデータ) (2023-09-05T19:45:09Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - On the application of transfer learning in prognostics and health
management [0.0]
データ可用性は、研究者や業界の実践者がデータベースの機械学習に頼ることを奨励している。
ディープラーニング、障害診断と診断のためのモデル。
これらのモデルにはユニークな利点がありますが、そのパフォーマンスはトレーニングデータと、そのデータがテストデータをどのように表現しているかに大きく依存しています。
トランスファーラーニング(Transfer Learning)は、前回のトレーニングから学んだことの一部を新しいアプリケーションに転送することで、この問題を改善できるアプローチである。
論文 参考訳(メタデータ) (2020-07-03T23:35:18Z) - Adversarial Multi-Source Transfer Learning in Healthcare: Application to
Glucose Prediction for Diabetic People [4.17510581764131]
本稿では,複数のソース間で類似した特徴表現の学習を可能にする多元逆変換学習フレームワークを提案する。
完全畳み込みニューラルネットワークを用いた糖尿病患者の血糖予測にこの考え方を適用した。
特に、異なるデータセットのデータを使用したり、あるいはデータセット内の状況にデータが少ない場合に輝く。
論文 参考訳(メタデータ) (2020-06-29T11:17:50Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
本稿では,情報的サンプルを効果的に選択するための,不確実性と分散性を考慮した新しい能動的学習手法である信頼コアセットを提案する。
2つの医用画像解析タスクの比較実験により,本手法が他の活動的学習方法より優れていることを示す。
論文 参考訳(メタデータ) (2020-04-05T13:46:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。