論文の概要: Graph Attention with Random Rewiring
- arxiv url: http://arxiv.org/abs/2407.05649v2
- Date: Thu, 18 Jul 2024 07:30:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 20:12:48.448654
- Title: Graph Attention with Random Rewiring
- Title(参考訳): ランダムスイッチによるグラフアテンション
- Authors: Tongzhou Liao, Barnabás Póczos,
- Abstract要約: 本稿では,3つのパラダイムの利点を組み合わせた新しいGNNアーキテクチャであるGraph-Rewiring Attention with Structures (GRASS)を紹介する。
GRASSは、ランダムな正規グラフを重畳して入力グラフをリワイヤし、長距離情報伝搬を強化する。
また、グラフ構造化データに適したユニークな付加的なアテンション機構を採用し、計算効率を保ちながらグラフ帰納バイアスを提供する。
- 参考スコア(独自算出の注目度): 12.409982249220812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have become fundamental in graph-structured deep learning. Key paradigms of modern GNNs include message passing, graph rewiring, and Graph Transformers. This paper introduces Graph-Rewiring Attention with Stochastic Structures (GRASS), a novel GNN architecture that combines the advantages of these three paradigms. GRASS rewires the input graph by superimposing a random regular graph, enhancing long-range information propagation while preserving structural features of the input graph. It also employs a unique additive attention mechanism tailored for graph-structured data, providing a graph inductive bias while remaining computationally efficient. Our empirical evaluations demonstrate that GRASS achieves state-of-the-art performance on multiple benchmark datasets, confirming its practical efficacy.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,グラフ構造化深層学習の基盤となっている。
現代のGNNの主なパラダイムは、メッセージパッシング、グラフリワイア、グラフトランスフォーマーである。
本稿では,これら3つのパラダイムの利点を組み合わせた新しいGNNアーキテクチャであるGRASS(Graph-Rewiring Attention with Stochastic Structures)を紹介する。
GRASSは、ランダムな正規グラフを重畳して入力グラフをリワイヤし、入力グラフの構造的特徴を保持しながら、長距離情報伝播を強化する。
また、グラフ構造化データに適したユニークな付加的なアテンション機構を採用し、計算効率を保ちながらグラフ帰納バイアスを提供する。
実験により、GRASSは複数のベンチマークデータセット上で最先端のパフォーマンスを達成し、実用性を確認した。
関連論文リスト
- GDM: Dual Mixup for Graph Classification with Limited Supervision [27.8982897698616]
グラフニューラルネットワーク(GNN)は、グラフ分類タスクにおいて優れたパフォーマンスを得るために、多数のラベル付きグラフサンプルを必要とする。
ラベル付きグラフサンプルの減少に伴い, GNNの性能は著しく低下する。
本稿では,新しいラベル付きグラフサンプルを生成するための混合グラフ拡張法を提案する。
論文 参考訳(メタデータ) (2023-09-18T20:17:10Z) - Transforming Graphs for Enhanced Attribute Clustering: An Innovative
Graph Transformer-Based Method [8.989218350080844]
本研究では、グラフクラスタリングのためのグラフトランスフォーマーオートエンコーダ(GTAGC)と呼ばれる革新的な手法を提案する。
Graph Auto-EncoderをGraph Transformerでマージすることで、GTAGCはノード間のグローバルな依存関係をキャプチャできる。
GTAGCのアーキテクチャはグラフの埋め込み、オートエンコーダ構造内のグラフ変換器の統合、クラスタリングコンポーネントを含んでいる。
論文 参考訳(メタデータ) (2023-06-20T06:04:03Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - GraphTheta: A Distributed Graph Neural Network Learning System With
Flexible Training Strategy [5.466414428765544]
新しい分散グラフ学習システムGraphThetaを紹介します。
複数のトレーニング戦略をサポートし、大規模グラフ上で効率的でスケーラブルな学習を可能にします。
この仕事は、文学における10億規模のネットワーク上で実施された最大のエッジアトリビュートGNN学習タスクを表します。
論文 参考訳(メタデータ) (2021-04-21T14:51:33Z) - Hierarchical Adaptive Pooling by Capturing High-order Dependency for
Graph Representation Learning [18.423192209359158]
グラフニューラルネットワーク(GNN)はノードレベルのグラフ表現学習タスクでグラフ構造化データを扱うのに十分成熟していることが証明されている。
本稿では,グラフ構造に適応する階層型グラフレベルの表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-13T06:22:24Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。